*** All present are expected to conduct themselves in accordance with our City's Core Values ***

OFFICIAL NOTICE AND AGENDA

of a meeting of a City Board, Commission, Department Committee, Agency, Corporation, Quasi-Municipal Corporation or Sub-unit thereof.

Notice is hereby given that the Park and Recreation Committee of the City of Wausau, Wisconsin will hold a regular or special meeting on the date, time and location shown below.

Meeting of the: Date/Time:		PARKS AND RECREATION COMMITTEE OF THE CITY OF WAUSAU Monday, October 2, 2023 at 4:30pm
Location:		407 Grant St, Wausau WI 54403 - Council Chambers
Members:		Dawn Herbst, Carol Lukens, Tom Kilian, Lou Larson, Sarah Watson
		AGENDA ITEMS FOR CONSIDERATION (All items listed may be acted upon)
	1	Call the Meeting to Order
	2	Public Comment or Suggestions
	3	Approve Minutes - September 11, 2023
	4	Discussion and Describe Action Device the 2024 Darks, Description & Espectry City Pudget

- 4 Discussion and Possible Action Reviewing the 2024 Parks, Recreation & Forestry City Budget Allocation
- 5 Educational Items

A. Park Updates (Athletic Park, Pleasant View, River Edge Trail, Riverlife Concession, Riverside Park Path, Scholfield Park, Sylvan Tubing Hill, Tenth Street Park Path, Oak Island Restroom, Skate Park, Winterization, Park Cleanup and Vandalism)

- B. Great Pinery Heritage Waterway Overview
- C. Riverside Park Remediation
- 6 Future Agenda Items -
- 7 Next Meeting Date November 6, 2023, at 4:30pm 407 Grant St, Wausau WI 54403 Council Chambers
- 8 Adjournment

Jamie Polley, Director

Members of the public who do not wish to appear in person may view the meeting live over the internet on the City of Wausau's YouTube Channel http://www.tinyurl.com/WausauCityCouncil, live by cable TV, Channel 981, and a video is available in its entirety and can be accessed at https://tinyurl.com/WausauCityCouncil. Any person wishing to offer public comment who does not appear in person to do so, may e-mail Jamie.polley@co.marathon.wi.us with "Parks Committee public comment" in the subject line prior to the meeting start. All public comment, either by email or in person, if agendized, will be limited to items on the agenda at this time. The messages related to agenda items received prior to the start of the meeting will be provided to the Chair.

In accordance with the requirements of Title II of the Americans with Disabilities Act of 1990 (ADA), the City of Wausau will not discriminate against qualified individuals with disabilities on the basis of disability in its services, programs or activities. If you need assistance or reasonable accommodations in participating in this meeting or event due to a disability as defined under the ADA, please call the ADA Coordinator at (715) 261-6622 or ADAServices@ci.wausau.wi.us to discuss your accessibility needs. We ask your request be provided a minimum of 72 hours before the scheduled event or meeting. If a request is made less than 72 hours before the event the City of Wausau will make a good faith effort to accommodate your request.

This Notice was posted at City Hall and transmitted to the Daily Herald newsroom on 9/29/2023 @ 2:30 p.m. Questions regarding this agenda may be directed to Jodi Luebbe, Park Office (715) 261-1560.

Distribution List: City Website, Media, WSD-Admin, Alderpersons, Mayor, Polley, Dept. Staff, Maryanne Groat, Brad Lenz, Eric Lindman, Lance Leonhard, Wisconsin Woodchucks, Wausau Events, Public Access, Wausau River District

4. Discussion and Possible Action Reviewing the 2024 Parks, Recreation & Forestry City Budget Allocation

Staff has prepared a preliminary operating budget for the City to consider within the guidelines set by the Finance Director. The guidelines were to present a budget with costs to provide the current services. The budget request for 2024 has an increase of 5.5% over the 2023 budget. Increases include 3% in personnel costs, \$18,510 (4% each) increase in water, electric, sewer and natural/propane gas, \$6,000 increase for gasoline, \$1,424 (8%) increase in refuse collection fees, \$6,000 increase in registration and tuition due to new CDL training requirements, and \$3,399 (5%) increase in insurances. Due to the implementation of workday and the cost to deliver services, \$22,383 was included in the budget for city park services completed by the county such as bill paying, financial reporting, employee recruitment and hiring. Incremental increases/decreases in a handful of other expenditures were also completed based on past budget numbers, efficiency in service delivery or reduction of the service.

Revenue was increased by 6% based on past final revenue numbers, increased fees, increased demand and to offset costs of services.

Due to the increased cost of equipment, the County Human Resources and Finance Committee has recommended a 20% increase to rolling stock for 2024 as part of the budget process. This is the first increase to this fund in 10+ years. Per the City Resolution dated October 31, 1974 that created the joint City-County Park Department under the County, the county and city shall share, on a 50/50 basis the purchase price of all machinery and equipment purchased and used solely for park department purposes. For this machinery and equipment, the City and County have each allocated \$173,460 to rolling stock each year. The increase of 20% to the department's rolling stock allocation would be \$36,220 bringing the new cost for each entity to \$209,680.

The budget will be presented to the Finance Committee and City Council during the budget process.

5A. Park Updates

Athletic Park:

Safety net will be replaced this fall.

First base concession area pavement has been removed for plumbing adjustments. New asphalt will be installed once the plumbing work is complete.

Pleasant View roof has been replaced and the chimney repaired.

River Edge Trail north of Bridge St. will have the pavement replaced by DPW.

Riverlife Concession Stand_HVAC ductwork repair/redirect to be completed this fall. This is the recommendation to allow the HVAC unit more space and airflow to work properly.

Riverside Park ADA path is complete to the playground (paving by DPW) Scholfield Park:

Fountain has been replaced and plumbing to bring meter has been brought above ground. Four individuals have been fined for illegal dumping.

Sylvan Tubing Hill magic carpet was installed at the hook-up locations.

Tenth Street Park an ADA path is complete to the playground (paving by DPW).

Oak Island Restroom will be removed at the end of October. The concrete slab will be installed this fall and the restroom constructed over the winter.

Skate Park construction documents are 90% complete and are being reviewed by staff. The park construction will be bid during the winter for spring 2024 construction. Staff will determine how much of the concrete work can be completed in house. This will be determined with the bid results. Winterization: Water winterization is underway and many fountains and bathrooms will be closed beginning in mid-October.

Park Cleanup and Vandalism: Encampments at Brockmeyer, Eau Claire River Conservancy, Farmers Market, Hammond, Pleasant View, and Oak Island. Hammond Park and Kickbusch Plaza have had an increase in the amount of vandalism and garbage left in the park requiring multiple cleanups per week by staff.

5B. Great Pinery Heritage Waterway Overview

The Wausau & Marathon County Parks & Recreation Foundation is proud to complete that the **Great Pinery Heritage Waterway (GPHW)** that has been designated as Wisconsin's 21st water trail and the first such water trail in Central Wisconsin. The GPHW paddling trail starts its journey at the historic Hat Rapids Dam in Oneida County and finishes its travels at the Lake DuBay Dam in Portage County. The scenic, urban, and historical water trail is 108 miles in length, the 4th longest water trail in the state. The GPHW connects today's paddler with the history, events and people of the river that runs through our heartland from ancient times to the 20th century. Staff will provide an overview of the trail.

5C. Riverside Park Remediation

Attached to your packet are the testing results for Riverside Park following the completion of the remediation work.

DRAFT

<u>CITY OF WAUSAU – PARKS AND RECREATION COMMITTEE MEETING MINUTES</u>

Date/Time: September 11, 2023 at 6:00 p.m. Location: Council Chambers, City Hall Parks and Recreation Committee Members Present: Dawn Herbst (c), Lou Larson, Tom Kilian, Carol Lukens, Sarah Watson

Others Present: Jamie Polley-Parks Director, Andy Sims-Parks Operations Superintendent, Thomas Johansen, Aaron Kowalski-Kowalski Masonry

1. In accordance with Chapter 19, Wisc. Statutes, notice of this meeting was posted and sent to the Daily Herald in the proper manner. A quorum was present and the meeting was called to order at 6:11pm.

2. Public Comment or Suggestions - none brought forward.

3. Approve Minutes – August 7, 2023 – **Motion** by Larson, second by Lukens to approve the Park and Recreation Committee draft August 7, 2023 minutes. Motion **carried** by voice vote, vote reflected as 5-0.

4. Discussion and Possible Action of Petition Submitted for Repair of Stewart Park - Staff had been asked to provide more specifics from the petitioners and then the estimates. Tom Johansen, 917 McClellan Street, spoke about his concerns regarding the cracks in the amphitheater wall. He felt petitioners wanted the wall to look nice, like the way it was, and not get too deteriorated. He discussed the \$4,600 quote from Kowalski Masonry and thought it was a good idea. Johansen felt that the wall should be evaluated every year. He mentioned the possibility of grant funds available through the Community Foundation. Polley said that staff does some work on the wall and relies on Kowalski Masonry for larger work. If larger projects don't get funded, anything under \$30,000 can go on a small project list through the Department's budget. Staff reached out to Kowalski Masonry who provided two quotes. Aaron Kowalski said the \$4,600 quote would do some masonry repairs to the wall and seal it up to prevent any more water from going into the caps. The wall would go through a freeze/thaw cycle and then should be re-evaluated in the spring. The cracks will be monitored to see which way they are moving. He didn't think there was any foundation issue but they did find that water drains towards the wall on the east side. The wall has tubes through the bottom where water is supposed to drain but there is some vegetation between the concrete and the wall. The vegetation could be cleaned out, but as a secondary safety net the Department could run drain tile which would prevent water from hitting the wall. Johansen thought if drain tile was sufficient, people would appreciate the hasta plants being left there. Kowalski noted the higher quote was for a complete wall rebuild. Polley said at this time the recommendation from Kowalski is to the \$4,600 worth of work and then evaluate the wall in spring. Most likely a cap will be recommended. That request will need to come from Committee but shouldn't be made until the wall is evaluated in the spring for the actual recommendation. Polley said there are enough funds in the Department's small projects budget to complete the work for \$4,600. Motion by Watson, second by Lukens to approve funding \$4,600 out of the Park Department's small projects budget. Motion carried by voice vote, vote reflected as 5-0.

5. Discussion and Possible Action Supporting Ice Arena Feasibility Study – Polley explained that one component of the Westside Masterplan is the County ice arena. The original sheet of ice in the arena was built in 1974 and at that time the refrigeration equipment and hockey boards were bought used from Eagle River. Nothing new was added when the second sheet was put in other than the refrigeration extension. The original compressors are still running both sheets and the Department limps along every year to make the ice and keep the arena going. The ice arena is a very important venue to the community, the area schools, Marathon County Youth Hockey, and the Cyclones. It brings in teams, spectators and visitors to the area. It's a larger community asset then just a County building and also benefits the City.

The first step of a new arena is to do a feasibility study. The study will look at the needs of the community, talk to all current users, look at potential future uses and economic impact. It will also look at whether the County or a different user group should be doing the ice arena. The cost of the feasibility study is \$32,500. The completed study will have a recommendation, a possible rendering of the facility, and a cost estimate. It will then be decided whether or not the County will build it. The County Board has been very clear if this facility moves forward it would have to be a public/private partnership because it doesn't have the means to fund 100% of a facility like this. For the feasibility study Polley has a \$5,000 commitment from youth hockey and \$5,000 commitment from the Wausau School District.

It's being brought to this Committee because there are City and County gift accounts which is money that comes to the Department that is not levy funded. Some of it is earmarked for specific projects that donors have given for. There is also trust fund money given that is marked for enhancements of parks facilities within the County and City. Polley usually doesn't need authority to spend money in this account. Polley received support for this from the County Park Commission, Environmental Resource Committee, and the Human Resources/Finance Committee to use around \$10,500 from the County gift account. It was not going to go to County Board until after the school district and this meeting. She is asking for this Committee's support to use \$6,000 or possibly more from the City gift account. Polley wanted to know whether Committee supported using the funds, she doesn't need authority to use them but if they didn't support it she would try to find the funding elsewhere. Lukens said she would support this from an economic development standpoint and it may also help give local youth something to do. Kilian supported Polley's efforts and thought it could be an asset to the City but felt the County wasn't always willing to step up when it could to assist the City with certain needs so he had a hard time with putting City money towards this County effort. **Motion carried** by voice vote, 4-1 with Kilian as the dissenting vote.

6. Educational Items

A. Park Updates – <u>Barker Stewart Island</u> – goats are back for their second round and already have made a big impact on the invasive species on the island. They have been enjoying the buckthorn. <u>Vandalism</u> – there continues to be a high frequency of illegal dumping within the parks. A few dumpsters that are utilized seasonally have been removed. Also, the restrooms by the farmers market are temporarily closed due to damage and people trying to stay in the restrooms. <u>Skate Park</u> – contract is complete, and Spohn Ranch will be finalizing the construction plans and bid documents. The goal is to determine the ability for contractors to complete the work yet this year or to see if it will be a Spring 2024 project. <u>Great Pinery Heritage Waterway Trail</u> – the Wausau & Marathon County Parks and Recreation Foundation has developed a water trail on the WI River. Each kayak launch/boat landing will contain a sign with historical information of the area and a map of the trail and current segment of the trail. The first of these signs has been installed at Riverlife Park. <u>Ball Diamonds</u> – Irrigation installation is in progress at Schulenberg and Memorial Parks (private funding) <u>Pleasant View</u> – New shelter roof is substantially complete. <u>Sylvan</u> – Exterior of shelter has been repainted and new carpet was installed on the tube hook-up area. <u>Whitewater Shelter</u> – New roof has been installed. <u>Vistas Clearing</u> – will be starting soon throughout the city.

7. Future Agenda Items - Riverside Park Remediation Summary

8. Next Meeting Date – The next regular scheduled meeting will be at 4:30pm on October 2nd in Council Chambers at City Hall, 407 Grant St., Wausau WI 54403.

8. Adjournment – **Motion** by Watson, second by Lukens to adjourn at 7:10pm. Motion **carried** by voice vote, vote reflected as 5-0.

Parks, Recreation and Forestry Dept City Park Subfund

2023-2024 Budget Comparison

	2024	Requested	2023 A	pproved	\$ D	ifference	Increase/Decrease
Personnel Services	\$	2,461,612.00	\$	2,343,399.00	\$	118,213.00	5.04%
Contracted Services	\$	494,607.00	\$	466,218.00	\$	28,389.00	6.09%
Materials and Supplies	\$	491,283.00	\$	457,275.00	\$	34,008.00	7.44%
Insurance and Fixed Costs	\$	80,390.00	\$	76,991.00	\$	3,399.00	4.41%
Total Expenses	\$	3,527,892.00	\$	3,343,883.00	\$	184,009.00	5.50%
Less: Revenues	\$	(389,170.00)	\$	(368,742.00)	\$	(20,428.00)	5.54%
Net Levy	\$	3,138,722.00	\$	2,975,141.00	\$	163,581.00	5.50%

PRF Department 2024 City Small Projects List

Riverside Park; Steps Rebuild Repair masonry and rebuild railing

Oak Island Park; Bridge to Fern Island

Install decorative string lighting

Fern Island; Limestone Trail

Removal of existing granite trail material and replace with an approved limestone trail material for improved compaction, maintenance, appearance, and accessibility.

City Playgrounds; Engineered Wood Fiber

Replace existing sand surface at Westview Park and River Highlands Park Playgrounds with EWF. Acquire additional EWF material to top-dress up to appropriate safety grades at existing playgrounds with same material.

Asphalt Path and Trail Corrections; ADA Compliance

Several smaller trail corrections required (grade changes, widths, or not existent connector sections) as identified in City of Wausau ADA audit. Identified areas include Gilbert Park, Oak Island Park, Riverside Park and Reservoir Park.

3M Park; Trail Reconstruction (Apply for grant)

Total reconstruction of existing trail system due to rerouting from playground installation and removals along with improper widths and grades as identified in City of Wausau ADA audit.

Sylvan Recreation Area Chalet; Basement Entry/Exit Doors \$11,500.00

Replace existing metal double doors with commercial grade fiberglass system.

Brockmeyer: Press Box Replacement	~\$15,000.00
Current press box is at end of life.	
Brockmeyer: Backstop Replacement End of life	~\$10,000
Riverlife Concession: Fencing	???
Replace existing fencing with decorative alternative t unit for better performance.	hat increases airflow to rooftop heating/cooling

Memorial Pool: Slide Maintenance

Interior repairs and maintenance on both waterslides.

\$17,000.00

\$28.000.00

\$3,200.00

\$7,500.00

\$10,000.00

\$5,000.00

\$15,000.00

Barker Stewart Island: Vegetation Management Utilize goats for continued invasive vegetation management.	\$7,000.00
City Pools: Pool Slide Inspections Mandatory inspections on pool slides.	\$5,000.00
Riverlife Sign Installation Install sign at south end of Riverlife Park	\$10,000.00
Athletic Park Column Caps (2023?)	\$26,996.00
	\$171,196 (only \$ listed)
If grant for 3M -\$28,000 & AP Column Cap 2023 -\$26,996	=\$116,200

PRESS RELEASE

MEDIA CONTACT:

William Bertram, President of Wausau & Marathon County Parks & Recreation Foundation 715-212-8188; william.c.bertram@gmail.com

FOR IMMEDIATE RELEASE

Wisconsin's Newest Water Trail Runs Through the Heart of Our State

According to the Department of Natural Resources (DNR), "Wisconsin is blessed with more than 15,000 lakes, 43,000 miles of rivers and 800 miles of Great Lakes shoreline, there is no shortage of paddling opportunities in Wisconsin. Water trails provide a network of access points, resting places and attractions for users of watercraft on lakes and rivers. In Wisconsin, some trails are interpretive routes, some take paddlers to campsites, some connect communities, but all allow visitors to experience the natural beauty of our state by this original mode of transportation." The DNR listed 12,600 rivers and streams in our great state and of those rivers and streams only 20 rivers are listed on their website as state

designated waterways and trails.

The Wausau & Marathon County Parks & Recreation Foundation is proud that the **Great Pinery Heritage Waterway (GPHW)** has been designated as Wisconsin's 21st water trail and the first such water trail in Central Wisconsin. Trail information can be found at <u>Water Trails in Wisconsin | Wisconsin DNR</u>.

The GPHW paddling trail starts its journey at the historic Hat Rapids Dam in Oneida County and finishes its travels at the Lake DuBay Dam in Portage County. The scenic, urban, and historical water trail is 108 miles in length, the 4th longest water trail in the state. The GPHW connects today's paddler with the history, events and people of the river that runs through our heartland from ancient times to the 20th century.

In addition to the creation of the river trail, a comprehensive website highlights the trail's access points and its amenities has been created and will be updated as additional amenities come online, this can be found at, www.greatpinery.com.

Communities and organizations up and down the river have embraced this unique project by adding key assets such as ADA approved launches that have opened the waterway to the disabled and elderly, making the Wausau area, *"a paddling destination like no other in the Midwest."* Two additional trails are underdevelopment by the Parks Foundation that will create additional water venues to the enjoyment of paddlers throughout the country, making Wausau the preferred base camp for paddling adventures from whitewater rafting on the Wolf River to small streams such as the Lower Big Rib and Eau Claire Rivers that offer a multitude of experiences for the recreational paddler to the adrenaline junkie.

Key funding was provided by the Wausau and Marathon County Parks and Recreation Foundation, B.A. & Esther Greenheck Foundation, the Dwight and Linda Davis Foundation, the Dudley Foundation, the Judd Alexander Foundation, Merrill Community Foundation, and the Community Foundation of North Central Wisconsin along with individual donors such as the Hadley Family Fund.

If you would like to donate to the water trail, please go to our website at <u>Great Pinery Heritage Waterway</u> <u>Post (wmcpf.org)</u>, scroll to the bottom of the page and hit donate. The Wausau & Marathon County Parks Foundation is a 501(c)(3) non-profit organization.

Creating a destination for paddlers in the Midwest like no other

- Creating a river trail using the Wisconsin Valley Improvement Corporation Century Trail and branding it the "Great Pinery Heritage Waterway" to increase tourism in Central Wisconsin so that we become a destination for paddlers
- Create historical signage at landings along the trail length that tell the story of the river, our heritages and its people
- Create a one-of-kind website that not only highlights our water trails but all the outdoor recreational opportunities in Central Wisconsin offering tourist a onestop experience to "come for a weekend and stay for a lifetime"

Tourism is the fastest growing component of the Wisconsin economy from November '20 to November '21. Up 16% in this timeframe

Tourism is now the 4th largest segment of our state's economy, larger than dairy, lumber, & construction

Tourism is the 2nd fastest growing segment of the Wausau economy from November '20 to November '21. Up 3.1% in this timeframe

What are Water Trails?

Water trails are marked routes on navigable waterways such as rivers and lakes for recreational use. They allow access to waterways for non-motorized boats and sometimes motorized vessels, innertubes, and other craft.

Water trails not only require suitable access points and take-outs for exit but also provide places ashore to camp and picnic, and other facilities for boaters.

Why tackle this project!

- Uniquely ties the Wisconsin River to its history as a historical waterway for Native Americans; Furriers and Missionaries; Logging and Pulg & Paper Industry, Legends & Lore of the rivers. Increase awareness of our historical rivers and the significant roles they played in the development of America's Heartland.
- Complements Greater Wausau Chamber of Commerce's Master Plan for outdoor recreation
- Complements Wausau's Whitewater Park and builds an awareness of Central Wisconsin as a center for outdoor recreation
 Complements Weston's Lower Eau Claire Water Trail
- Complements the Master Plan for Rib Mountain as a destination for bikers, skiers and paddlers to recreate in Central Wisconsin,
 driving tourism and hotel stays
- May increase the potential for water-based businesses to locate in Central Wisconsin to support the needs of kayakers, canoeists and paddleboarders
- Marathon & Lincoln counties become a premier destination for kayakers, canoeist and paddleboard enthusiasts
 Positive economic impact to the Central Wisconsin area. Increase use of our county parks, creates a sense of place and promotes
 good health through outdoor creation
- Majority of work already done by Wisconsin Valley Improvement Corporation. We are providing branding, signage, and an allinclusive outdoor recreation website that promotes Central Wisconsin as the "Outdoor Recreation Capital of Wisconsin"
- Expand trail system to create the longest trail system in the Midwest (future). Complements Lower Wisconsin Trail at Portage and the Fox River Heritage Trail, making this one of the longest waterways in USA

4

7

Executive Summary

- In terms of specific paddlesports, recreational kayaking continues to grow in popularity and seems to be replacing many Americans' desires to cance. Stand up padding, on the other hand, doesn't have nearly as high a participation rate as either canceling or recreational kayaking, but its popularity has soared in recent years, gaining 1.5 million participants since 2013.
- 81% of paddlers are on the water 4 hours or less, 11% 8 hours or less and 8% will overnight.
- Paddlers like a variety of water and will typically come to an area for <u>three</u> days, paddling for two and biking and hiking for one, and want local accommodations
- Paddling participants tend to be Caucasians who have attended or graduated from college. They are best represented by an average annual household income of at least 575,000, a demographic characteristic that has steadily climbed since 2014.
- Males make up a slightly larger percentage of paddlers than females. Male participation, however, is declining at about one percent per year, and female participation is increasing by the same amount.

Source: 2019 Special Report on Paddlesports & Safety – Outdoor Recreation Found

STRATEGIC ACTION PLAN INITIATIVE 1.1 THE WAUSAU BRAND

Source: www.michiganwatertrails.org

3

Re-brand the Wausau region as an outdoor recreation mecca STRATEGIES AND ACTIONS

- 1.1.1. Launch an Outdoor Recreation Task Force that brings together innovators in the region's outdoor recreation industry to discuss opportunities for new events, destinations, and other business opportunities that leverage the region's large menu of outdoor amonitor.
- Now of the target space space of the space space
- 1.1.4. Build awareness of the Wausau region as a destination for the business side of extreme sports and outdoor recreation.

11

13

statistical series Statistical

Project covers four counties: Trail Head - Hat Rapids – Mile 89 Trail End – Lake DuBay Dam – Mile 190 Landings – I in Oneida County, 15 in Lincoln County, 39 in Marathon County, 2 in Portage County

- зэ in Marathon County, 2 in Portage County
 Trail Designer: Wisconsin Valley Improvement Company
- Storytelling: Marathon County Historical Society, Merrill Historical Society, and Tomahawk Historical Society with support from the Wisconsin Historical Society & UWM
- Mapping: North Central Wisconsin Regional Planning Commission
 Project Sponsor: Waysay and Marsthon County Back
- Project Sponsor: Wausau and Marathon County Parks and Recreation Foundation
 Project Owners: Wausau and Marathon County Parks
 County Parks
- Project Owners: Wausau and Marathon County Parks Department, Merrill Parks Department, Lincoin County Parks & Forestry Department, Municipalities up & down the rivers, Public Utilities & Private Entities Website: Central Wisconsin Visions Bureau

ONLY TALKING ABOUT MARATHON COUNTY

22

24

- Wisconsin Public Service/WE Energy
 Guppy's Lakeside Grill
 Wisconsin Valley Improvement Company
 Lincoln County Parks & Forestry
- Lincon County Paris & Forestry
 City of Merrill
 City of Merrill Parks Department
 Wausau & Marathon County Parks, Recreation & Forestry
 Marathon County Parks, Commission
 Lake Wausau Association

- Lake Wousau Association
 Village of Maine
 Town of Rib Mountain Parks Commission
 Town of Rib Mountain
 City of Mosinee
 City of Schofield

- City of Scholled
 Village of Rothschild
 Town of Knowlton
 Village of Weston Parks Department
 Village of Marathon City

- Central Wisconsin Visitors Bureau
 Wausau River District
- Wisconsin Department of Natural Resources
 IRONBULL, Inc.
- IRONBULL, Inc.
 North Central Wisconsin Regional Planning Corr
 Merrill Historical Society
 Lake Dubay Association
 Dubay Lions Club
 Greater Wausau Chamber of Commerce
 Meaning Contents of Commerce

- Greater Vausau Chamber of Commerce
 Wisconsin Department of Taurin
 Wausau Whitewater Kayak Corporation
 Marthan County Hotorial Society
 Wausau & Marthan County Hotorial Society
 Wausau & Marthan County Park and Recreation Foundation
 Peter Bierneier Retired Director of Programs for Wisconsin DNR,
 Consultant
 Baker-Tilly Consulting Cheryl Stang Vice President Marketing

Big Thumbs Up

27

Table 1a Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

Collected By>											CWE	, Inc.					
					Date>	6/13/2006	6/13/2006	6/13/2006	12/8/2008	12/8/2008	12/8 <mark>/2008</mark>	12/8/2008	12/8/2008	12/8/2008	12/8/2008	12/8/2008	12/8/2008
					Sample>	Culv. In.*	Culv. Out*	122E	1003 Emt	130 Riv	141 Riv	120 Riv	117 Riv 1	Fern	117 Riv 2	Oak	Weston
				Sample De	oth(Inches)>	4-6 ²	4-6 ²	4-6 ²	8-10	4-6	6-8	4-6	4-6	4-6	4-6	4-6	4-6
	Cat	Percent I	Moisture (%)>	-	-	-	-	-	-	-	-	-	-	-	-		
			580	urateo (S) vs Un. T	saturated (U)>	U	U	U	U	U	U	U	U	U	U	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL												
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	2.1	<2.0	<0.99	<1	<1.8	<1	<1	<1	<1	<1	<1	<1
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		15	11	<4.9	<5	<5	<5	<5	5.1	<5	5.6	<5	<5
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		48	23	6.3	<5	<5	<5	<5	12	<5	15	<5	<5
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		140	83	17	15	6.0	<5	<5	41	5.6	44	<5	<5
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		60	36	11	6.8	5.5	<5	<5	25	<5	27	<5	<5
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		<u>2,400</u>	1,400	270	260	95	87	120	1,100	170	1,100	30	<5
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		17,000	9,300	1,600	3,000	700	630	830	7,600	1,200	8,200	270	24
Total TCDD		ng/kg				10	14	6.7	7.9	<1.8	3.3	5.7	15	3.5	22	<1	<1
Total PeCDD		ng/kg				84	71	<4.9	<5	<5	<5	<5	40	<5	48	<5	<5
Total HxCDD		ng/kg				780	570	110	85	58	25	34	310	34	360	<5	<5
Total HpCDD		ng/kg				4,300	2,800	460	500	190	170	230	2,000	300	2,000	58	<5
Furan Congeners																	
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		6.7	7.3	1.7 ^T	2.0	<3.9	<1	<1	3.5	1.4	3.7	<1	<1
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		13	8.7	<4.9	<5	<5	<5	<5	<5	<5	<5	<5	<5
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		45	<u>80</u>	5.7	<u>76</u>	<5	<5	<5	16	<5	16	<5	<5
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		32	35	7.3	24	<5	<5	<5	37	<5	12	<5	<5
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		34	33	5.4	26	<5	<5	<5	19	5.9	17	<5	<5
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		59	75	9.0	100	<5	<5	<5	29	<5	23	<5	<5
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		14	11	<4.9	6.4	<5	<5	<5	<5	<5	5.0	<5	<5
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		550	<mark>4</mark> 80	94	160	43	27	42	350	83	350	19	<5
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		40	31	8.5	13	<5	<5	<5	20	<5	20	<5	<5
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		950	710	130	170	49	36	53	520	170	550	34	<5
Total TCDF		ng/kg				110	190	43	140	4.8	18	24	110	16	110	12	5.6
Total PeCDF		ng/kg				550	880	69	880	49	28	33	260	12	250	45	<5
Total HxCDF		ng/kg				990	1,200	150	1,600	64	40	52	580	60	560	27	<5
Total HpCDF		ng/kg				1,400	710	250	540	87	51	78	870	190	850	38	<5
Individual Exceedances (DC)			1	1		8	5	0	2	0	0	0	2	0	2	0	0
Cumulative Hazard Index (DC,	Cumulative Hazard Index (DC) 1.0					1.6315	1.4627	0.1804	0.8558	0.0366	0.0105	0.0151	0.6551	0.0519	0.6298	0.0059	0.0001
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		2.2E-05	1.8E-05	2.4E-06	9.4E-06	5.6E-07	2.8E-07	3.9E-07	8.9E-06	8.7E-07	8.7E-06	1.2E-07	1.5E-09
Total 2, 3, 7, 8-TCDD Equivalence	e ¹	ng/kg	4.82	21.8		106	88	12	46	2.8	1.3	1.9	44	4.2	42	0.58	0.0072

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet

This site is assessed as Non-Industrial RCL = Residual Contaminant Level

DC = Direct Contact

ng/kg = Parts Per Trillion (ppt) < = Concentration Below Laboratory Detection Limit

- = Not Sampled/Collected

- - = No Standard/Not Applicable

TEQ = Toxicity Eqivalent Calculations

 1 = TEQ values calculated using the U.S. EPA 2007 values.

² = Depth is approximate. CWE letter notes sample collection from base of A horizion, generally 4 to 6 inches below land surface.

* = Area of sample removed during July 2023 remedial excavation.

Italic
Bold
Underlined

= Exceeds NR720 Groundwater Pathway Protection = Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL = Exceeds NR720 Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes: ^T = Estimated maximum concentration

Table 1b Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

	Collected By						> Sand Creek Consulting (SCC)			TRC				SC	C	REI	SCC	REI
					Date>	1/9/2018	1/9/2018	1/9/2018	1/9/2018	8/14/2019	8/14/2019	8/14/2019	8/14/2019	11/5/2019	11/5/2019	9/14/2020	11/5/2019	9/14/2020
					Sample>	B-101	B-102	B-103	B-104	N4-1*	N4-2*	N4-3*	N7-1	RP-101*	RP-102	RP-102	RP-103	RP-103
				Sample Dep	pth(Inches)>	8	8	8	8	0-6	0-6	0-6	0-6	10	8	10-12	10	12-14
			C = t	Percent I	Moisture (%)>	12.0	15.1	16.8	9.9	8.7	12.0	8.9	8.2	26.7	24.6	9.9	22.6	17.7
		1	Sal	urated (S) VS Uns	saturated (U)>	U	U	U	U	U	U	U	U	U	U	U	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL													
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	<0.28	<0.41	<0.23	<0.23	0.80	0.85	1.0	0.26 ^J	<2.1 ^D	<0.27	<0.28	<2.5	<0.36
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		2.3	0.74 ^{I,J,} EMPC	0.48 ^{I,J,} EMPC	0.56	2.5	5.2	5.9	0.91	<1.5 ^D	1.9 ^J	0.44 ^{I, J,} EMPC	<0.55	<0.59
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		3.1	1.1 ^J	0.55 ^{I,J,} EMPC	0.69	6.3	7.8 ^{J,DN2}	9.0 ^{J,DN2}	2.2	<2.9 ^D	4.8 ^J	1.1 ^{I, J,} EMPC	1.4 ^J	<1.2
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		15	4.2 ^J	2.2	3.6	24	39 DN2	44 DN2	6.1	6.0 ^{J, D}	21	5.8	4.7	<1.4
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		7.6	2.4	1.4 ^J	1.9 ^J	12	15 ^{J,DN2}	15 ^{J,DN2}	3.4 ^J	3.4 ^{J, D}	8.9	3.0 1	2.0 ^{I, J,} EMPC	<1.1
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		290	85	50	81	530	820 DN2	930 DN2	150	95 ^D	380	110	77	9.4
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		2,000	570	380	650	5,100	7,300 DN2	9,200 DN2	1,300	610 ^{I, J, D}	3,000	900	520	63
Total TCDD		ng/kg				10	2.5 ^B	1.7 ^{B, J}	1.1 ^{B, J}	11	18	12	21	<2.1 ^D	2.0	1.1	4.7	0.40
Total PeCDD		ng/kg				23	7.1	2.6	3.3	22	25	33	50	<1.5 ^D	9.6	2.2	7.2	<0.59
Total HxCDD		ng/kg				120	39	19	24	170	260 DN2	310 DN2	7.6	45 ^D	120	40	35	<1.1
Total HpCDD		ng/kg				560	160 🖣	99	150	1,000	1,600 DN2	1,900 DN2	330	180 ^D	710	210	140	9.4
Furan Congeners																		
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		2.9 ^V	0.87	<0.46	<0.26	2.1 ^v	4.4 ^C	2.4 ^V	0.55 ^{I,J,} EMPC	<2.4 ^D	1.4 ^c	<0.61	1.9 ^v	<0.44
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		2.0	0.70 ^J	<0.52	0.42	2.1	270 P, EMPC	3.4	0.69	<1.5 ^D	1.8 ^J	<0.46	<0.29	<0.73
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		9.8	2.0 [」]	1.1 ^J	1.2 ^J	11	14	61	4.1 ^J	<1.7 ^D	14	5.3 ^{I, J,} EMPC	12	<0.44
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		5.8	2.0 ^{I,J,} EMPC	1.3 ^J	1.5 ^J	8.2	16 ^{J, DN2}	75 P,DN2, EMPC	3.6 ^{P,J,} EMPC	4.8 ^{J, D}	6.3	<0.73	2.1	<1.3
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		6.7	1.8 ^J	0.99 ¹	1.2 ^J	8.0	20 ^{J, DN2}	28 P,DN2, EMPC	2.7 」	3.8 ^{J, D}	14 ^{P,} EMPC	11 ^{P,} EMPC	6.2 ^{P,} EMPC	<1.2
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		11 P, EMPC	2.7 ^J	1.2 [」]	1.6 ^J	6.5	16 ^{J, DN2}	30 ^{DN2}	2.4 」	3.9 ^{J, D}	6.2	7.7	5.2	<1.3
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		1.3 ^J	0.36	<0.12	< 0.20	3.0 ^J	6.7 ^{J,DN2}	6.1 ^{J,DN2}	0.8	2.0 ^{J, D,} EMPC	2.9 」	<1.1	1.5 ^{I, J,} EMPC	<1.2
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		120	3 <mark>0</mark>	17	26	150	250 DN2	380 DN2	46	37 ^D	99	40	45	3.2
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		4.0 ^J	0.96 LJ,	0.81	1.0 ^J	9.4	14 ^{J,DN2}	20 ^{J,DN2}	2.3	2.3 ^{I, J, D,} EMPC	6.3	2.4 ^{I, J,} EMPC	2.4	<1.7
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		190	36	19	42	320	490 DN2	620 DN2	71	49 I, J, D, EMPC	170	56	68	6.2 ^J
Total TCDF		ng/kg				69	23	7.9	6.6	58	99	140 ^E	21	<2.4 ^D	41	14	35	<0.44
Total PeCDF		ng/kg				120	36	0.38	18	180	480	760	50	130 ^D	260	120	190	2.6
Total HxCDF		ng/kg				150	37	24	27	200	430 ^{DN2}	1,200 DN2	87	110 ^D	280	120	210	<1.2
Total HpCDF		ng/kg				140	46	34	59	380	610 DN2	1,100 DN2	100	91 ^D	250	90	110	3.2
Individual Exceedances (DC)			1	1		0	0	0	0	1	3	4	0	0	0	0	0	0
Cumulative Hazard Index (DC)			1.0	1.0		0.2495	0.0676	0.0352	0.0493	0.3379	0.713	1.0547	0.1096	0.0596	0.2933	0.1112	0.1333	0.0012
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		3.2E-06	8.7E-07	4.6E-07	6.7E-07	4.5E-06	9.0E-06	1.3E-05	1.4E-06	8.0E-07	3.8E-06	1.4E-06	1.5E-06	3.0E-08
Total 2,3,7,8-TCDD Equivalence ¹		ng/kg	4.82	21.8		15	4.2	2.4	3.3	22	44	<u>62</u>	7.0	3.9	19	6.7	7.5	0.15

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet This site is assessed as Non-Industrial RCL = Residual Contaminant Level DC = Direct Contact ng/kg = Parts Per Trillion (ppt) < = Concentration Below Laboratory Detection Limit - = Not Sampled/Collected - - = No Standard/Not Applicable TEQ = Toxicity Eqivalent Calculations

¹ = TEQ values calculated using the U.S. EPA 2007 values.

* = Excavated during redevelopment

* = Area of sample removed during July 2023 remedial excavation.

Italic	= Exceeds NR720 Groundwater Pathway Protection
Bold	= Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL
Underlined	= Exceeds NR720 Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodib<mark>enzo-p-</mark>dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodib<mark>enzo-p</mark>-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value

^{EMPC} = Estimated Maximum Possible Concentration

P = PCDE Interference

^I = Interference Present

^V = Results verified by confimation analysis

^C = Results obtained from confirmation analysis

^D = Results obtained from analysis of diluted sample

 D^{N2} = Results obtained from diluted sample

^E = Exceeds calibration Range

 B = Less than 10x higher than method blank level

Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Railroad Corridor 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

				(Collected By>							
					Date>	9/26/2020	9/26/2020	9/26/2020	9/26/2020	9/26/2020	9/30/2020	9/ <mark>30/20</mark> 20
					Sample>	SB-01 (0-4)	SB-01 (28-31)	Dup-01	SB-03 (0-4)	SB-03 (24-27. <mark>5)</mark>	SB-05 (0-4)	SB-05 (29-31.5)
				Sample Dep	oth(Inches)>	0-4	28-31	28-31	0-4	24-27.5	0-4	29-31.5
				Percent I	Moisture (%)>							
	T		Satu	urated (S) vs Uns	saturated (U)>	U	U	U	U	U	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL							
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	<0.21	<0.15	<0.15	<0.18	<0.13	0.35 ^{J, EMPC}	<0.038
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		<0.15	<0.0097	<0.11	< 0.14	<0.10	0.99 ^{J, EMPC}	<0.047
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		0.85 ^{J, B}	0.27 ^{J, B}	0.29 ^{J, B,} EMPC	0.46 ^{J, B}	< 0.033	2.7	0.20 J, EMPC
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		1.4 [」]	< 0.034	0.18 ^{J, EMPC}	1.9 ^{J, B}	<0.042	9.3	<0.048
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		0.91 ^{J, B}	<0.028	<0.030	0.87 ^{J, B}	0.082 ^{J, B}	5.2	<0.044
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		21 ^B	0.46 ^{J, B}	0.95 ^{J, B,} EMPC	67 ^B	3.5 ^{J, B}	230 ^B	0.11 ^{J, B}
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		130 ^в	2.7 ^{J, B}	6.7 ^{J, B,} EMPC	850 ^B	41 ^B	1,800 ^в	1.3 ^{J, B}
Total TCDD		ng/kg				2.2	<0.15	<0.15	<0.18	< 0.13	13 EMPC	<0.038
Total PeCDD		ng/kg				<0.26	< 0.0097	<0.11	<0.14	<0.10	21 EMPC	<0.047
Total HxCDD		ng/kg				7.2 ^B	0.27 ^{J, B}	0.46 J, B, EMPC	12 ^{B,} EMPC	0.43 J, B, EMPC	68	0.20 ^{J, EMPC}
Total HpCDD		ng/kg				40 ^B	0.98 ^{J, B}	2.1 ^{J, B,} EMPC	360 ^B	21 ^B	560 ^B	0.28 ^{J, B,} EMPC
Furan Congeners												
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		0.6	<0.071	<0.084	<0.11	< 0.063	0.78 ^{J, B}	0.066 ^{J, B}
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		<0.18	<0.049	< 0.060	<0.094	< 0.050	<0.58	0.072 ^{J, EMPC}
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		0.52 ^{J, EMPC}	<0.053	< 0.071	<0.10	< 0.059	1.6	<0.038
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		0.85	<0.041	0.2	0.32 J, EMPC	<0.055	4.4 ^J	<0.070
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		0.89	< 0.036	0.23 J, EMPC	0.33	<0.049	3.7	<0.062
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		0.82 J, EMPC	< 0.030	0.20	0.33	<0.041	3.0	<0.037
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		0.44	<0.028	0.29	<0.13	<0.042	<0.41	0.049
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		6.5 ^B	0.18 ^{J, B,} EMPC	0.43 ^{J, B}	8.2 ^B	0.39 ^{J, B,} EMPC	69 ^B	0.18 ^{J, B,} EMPC
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		0.71 ^{J, B,} EMPC	<0.022	0.21 ^{J, B,} EMPC	0.66 ^{J, B}	<0.030	3.1	< 0.035
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		13 ^в	0.79 ^{J, B}	1.1 ^{J, B}	40 ^B	1.8 ^{J, B,} EMPC	140 ^в	0.52 ^{J, B,} EMPC
Total TCDF		ng/kg				5.3 EMPC	<0.071	< 0.084	<0.11	<0.068	23 ^{EMPC}	0.11 ^{J, B,} EMPC
Total PeCDF		ng/kg				17 ^{EMPC}	< 0.053	< 0.21	1.0 ^{J, EMPC}	<0.17	69	0.16 ^{J, EMPC}
Total HxCDF		ng/kg				16 EMPC	< 0.041	0.91 ^{J, EMPC}	7.9 EMPC	0.21 ^{J, EMPC}	96	<0.051
Total HpCDF		ng/kg				17 ^{B,} EMPC	0.32 ^{J, B,} EMPC	0.98 ^{J, B,} EMPC	31 ^B	1.3 ^{J, B,} EMPC	180 ^в	0.18 ^{J, B,} EMPC
Individual Exceedances (DC)			1	1		-	-	-	-	-	-	-
Cumulative Hazard Index (DC)			1.0	1.0		-	-	-	-	-	-	-
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		-	-	-	-	-	-	-
Total 2,3,7,8-TCDD Equivalence ¹		ng/kg	4.82	21.8		1.2	0.034	0.16	1.4	0.060	8.3	0.037

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet

This site is assessed as Non-Industrial

RCL = Residual Contaminant Level

DC = Direct Contact

ng/kg = Parts Per Trillion (ppt)

< = Concentration Below Laboratory Detection Limit

- = Not Sampled/Collected

- - = No Standard/Not Applicable

TEQ = Toxicity Eqivalent Calculations

¹ = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

Italic	
Bold	
Underlined	

= Exceeds NR720 Groundwater Pathway Protection
 = Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL
 = Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value

EMPC = Estimated Maximum Possible Concentration

^B = Compound was found in the blank and sample.

 2 = Lab report containd two (2) separate identical results

^a = Lab report containd two (2) separate identical results ³ = Lab report containd two (2) separate results with one result = 0.0050 mg/kg and the seond = 0.0052 mg/kg. Results reported on a dry weight basis and are valid to no more than 2 significant figures

Table 1d Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Railroad Corridor 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

			Collected By>	RE <mark>L Engineerin</mark> g, Inc.														
					Date>	4/23/2020	9/14/2020	4/23/2020	9/14/2020	4/23/2020	4/23/2020	4/23/2020	4/23/2020	4/23/2020	4/23/2020	4/23/2020	4/23/2020	5/12/2021
					Sample>	R1*	R1*	R2	R2	R3	R4	R5	R6	R7	R8*	R9*	R10*	R11
				Sample De	pth(Inches)>	3-5	10-12	4-6	10-12	3-6	3-5	6-9	6-8	11-13	2-4	4-5	5-6	10-12
			Cat	Percent	VIOISTURE (%)>	28.6	12.9	22.4	15.4	16.7	18.8	13.3	8.6	8.1	11.3	3.9	8.3	10.4
			381		saturateu (U)>	U	0	U	U	U	0	U	U	U	U	0	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL													
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	1.1	<0.67	0.55	<0.39	< 0.24	<0.18	<0.34	<0.52	<0.20	<0.17	<0.15	<0.22	<0.43
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		5.2	1.9 [」]	2.8	1.0 ^{I, J,} EMPC	0.55 I, J, EMPC	1.2 ^J	0.84	0.73	<0.10	<0.094	<0.097	0.24 L, J, EMPC	0.87 」
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		12	5.1 ^J	5.1 ^J	3.3	0.39 I, J, EMPC	1.7 ^J	0.89 ^{I, J,} EMPC	0.59 ^{I, J,} EMPC	<0.25	<0.22	<0.19	0.61	8.5
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		39	16	22	11	1.6 ^{I, J,} EMPC	6.0	3.5 ¹	2.6 」	<0.25	<0.17	0.29 」	1.5 ^J	2.3
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		24	8.5	10	5.2 ^{I, J,} EMPC	1.2 [, J, EMPC	3.6	1.9 ^J	1.2 ^J	<0.26	0.16 ^{I, J,} EMPC	<0.17	1.2	8.0
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		960	310	400	200	37	0.64 ^J	78	57	5.8	1.3	5.3	33	4.0 ^J
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		7,400	2,600	3,000	1,400	270	850	660	510	44	49	35	280	150
Total TCDD		ng/kg				22	7.5	9.3	4.1	1.2	6.3	< 0.34	<0.52	<0.20	<0.17	<0.15	<0.22	1,300
Total PeCDD		ng/kg				58	20	29	5.9	2.4	11	<4.3	3.1	<0.10	<0.094	0.16	0.72	3.8
Total HxCDD		ng/kg				350	140	160	60	16	51	28	15.0	2.4	1.3 」	2.7 ¹	14	8.5
Total HpCDD		ng/kg				1,900	610	760	410	77	230	160	130	11	12	10	63	56
Furan Congeners																		
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		4.0 ^V	1.8 ^C	2.5 ^V	1.5 ^v	0.66	0.80 I, J, EMPC	<0.34	<0.48	<0.17	<0.26	<0.18	0.18 ^{1, J,} EMPC	1.1 ^c
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		4.7 ^J	1.9 [」]	3.2 ^J	<1.0	0.49	0.94	0.57 ^J	<0.022	<0.14	<0.047	<0.16	0.17 ^{I, J,} EMPC	1.0 [」]
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		12	5.0	15	4.8 ^J	1.3	2.4	5.7	9.2	0.14 ^{I, J,} EMPC	0.24	0.56	0.81	13
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		19	9.8 ^{P,} EMPC	24 ^{P,} EMPC	4.1	1.2	2.8	1.2 ^J	1.7 ^J	<0.28	<0.28	0.20	0.52	3.9 ¹
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		22	6.7	7.9	3.8 ^J	1.4 ^{I, J,} EMPC	4.8 ^{P,} EMPC	2.0 ^J	1.8 ^J	<0.18	0.85 ¹	0.90 ^{P, J,} EMPC	1.2 ^{P, J,} EMPC	5.2
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		23	7.5	15	6.8	1.5 [」]	3.6	4.8	1.9 ^J	<0.27	0.28 ^J	0.43	0.93	8.5
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		5.5	1.7 ^{I, J,} EMPC	3.1	<0.90	<0.46	0.64	0.67 ^{I, J,} EMPC	<0.17	<0.23	<0.20	<0.14	0.22 ^{I, J,} EMPC	1.6 ^{J, P,} EMPC
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		340	12 <mark>0</mark>	140	65	14	40	28	17	2.2	1.8 」	1.9 ^J	8.6	61
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		17	6.8	7.6	2.7 ^{I, J,} EMPC	<0.50	2.0	1.3 ^J	1.2 ^J	<0.22	<0.15	<0.14	0.46	4.0 ^J
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		450	170	180	110	16	56	39	32	3.0 ¹	2.5 ^{I, J,} EMPC	2.4	19	92
Total TCDF		ng/kg				110	50	72	15	5.8	22	9.6	7.8	0.31	0.49	2.4	3.0	27
Total PeCDF		ng/kg				230	120	240	97	17	41	81	86	1.9 ^J	2.2 」	9.2	13	140
Total HxCDF		ng/kg				520	210	290	130	22	60	86	39	3.1	3.7 」	6.9	14	290
Total HpCDF		ng/kg				750	230	310	150	30	87	74	44	2.4	1.8	1.9	20	170
Individual Exceedances (DC)			1	1		2	0	0	0	0	0	0	0	0	0	0	0	0
Cumulative Hazard Index (DC)			1.0	1.0		0.6165	0.2248	0.3381	0.1425	0.0392	0.0986	0.0905	0.0951	0.0016	0.0046	0.0075	0.026	0.1848
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		8.3E-06	2.9E-06	4.3E-06	1.9E-06	4.8E-07	1.0E-06	1.1E-06	1.1E-06	2.8E-08	5.1E-08	8.9E-08	3.3E-07	1.9E-06
Total 2,3,7,8-TCDD Equivalence ¹		ng/kg	4.82	21.8		<u>40</u>	14	23	9.1	2.3	5.0	5.3	5.4	0.14	0.25	0.43	1.6	9.5

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet This site is assessed as Non-Industrial

RCL = Residual Contaminant Level

DC = Direct Contact

ng/kg = Parts Per Trillion (ppt)

< = Concentration Below Laboratory Detection Limit

- = Not Sampled/Collected

- - = No Standard/Not Applicable

TEQ = Toxicity Eqivalent Calculations

¹ = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

* = Excavated during redevelopment

Italic	=
Bold	=
Underlined	=

Exceeds NR720 Groundwater Pathway Protection Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value

EMPC = Estimated Maximum Possible Concentration

P = PCDE Interference

^I = Interference Present

^V = Results verified by confimation analysis

^C = Results obtained from confirmation analysis

^D = Results obtained from analysis of diluted sample

^E = Exceeds calibration Range

Table 1e Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

					Collected By>					RE	I Engineering,	Inc.		
					Date>	4/23/2020	4/23/2020	5/12/2021	4/23/2020	4/23/2020	4/23/2020	4/23/2020	4/23/2020	4/23/2020
					Sample>	P1*	P1*	P1*	P2	P2	P3	P3	P4	P4
				Sample De	pth(Inches)>	2-3	7-9	22-24	2-3	10-12	2-3	12-14	2-3	9-11
				Percent	Moisture (%)>	45.0	24.7	12.7	20.7	19.5	19.0	12.0	17.8	12.9
	1	1	Sat	turated (S) vs Un.	saturated (U)>	U	U	U	U	U	U	U	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL									
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	0.35	0.71	<3.9 D	<0.30	<0.13	<0.24	<0.74	<0.96	< 0.54
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		3.0 ^{I, J,} EMPC	6.1	3.0 ^{J, D}	0.43	< 0.15	0.25	0.42 ^{I, J,} EMPC	<0.56	< 0.53
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		6.0 [」]	14	10 ^{J, D}	0.58 ^{I, J,} EMPC	<0.21	0.61 ^J	0.77 ^{I, J,} EMPC	1.8 ^{I, J,} EMPC	0.57 ^{I, J,} EMPC
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		23	57	50 ^D	2.6 」	0.4	1.4 ^J	1.4 ^J	3.9 ¹	1.9 ^J
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		13	30	26 ^D	1.6 ^{I, J,} EMPC	0.35 ^{I, J,} EMPC	0.67 ^{I, J,} EMPC	0.76	3.0 ¹	0.82 ^{I, J,} EMPC
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		520	1,200	900 ^D	55	4.8 ^J	27	28	110	39
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		4,000	9,600	6,600 ^D	370	67	170	220	890	310
Total TCDD		ng/kg				4.0	9.6	<3.9 ^D	1.7	0.82	<0.24	<0.74	<0.96	<0.54
Total PeCDD		ng/kg				18	53	26 ^D	5.3	<0.15	1.8 ¹	0.82	3.6	<0.43
Total HxCDD		ng/kg				200	430	330 ^D	22	4.8 ^J	9.1	7.2	37	12
Total HpCDD		ng/kg				1,100	2,500	1, <mark>800 ^D</mark>	110	19	52	54	200	73
Furan Congeners														
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		1.6	2.6 ^V	<4.6 D	0.47 ^J	<0.21	0.26 ^{I, J,} EMPC	<0.64	<0.74	<0.77
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		3.1	6.1	<1.1 ^D	0.40 I, J, EMPC	<0.26	<0.48	<0.61	<1.2	<0.59
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		26	34	22 ^{J, D}	1.1	<0.22	0.61	2.2	2.3 ^{I, J,} EMPC	0.89
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		9.3	15	16 ^{J, D}	1.4 ^J	<0.30	0.83	0.73 [」]	2.3 ^{I, J,} EMPC	1.6 ^{P, J,} EMPC
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		10	21	16 ^{J, D}	2.1 P, J, EMPC	0.55 」	1.3 ^{I, J,} EMPC	0.81 ^{I, J,} EMPC	2.4	0.86
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		25	39	14 ^{J, D}	1.7 ^J	0.22 ^{I, J,} EMPC	0.67 ^{I, J,} EMPC	1.6 ^{I, J,} EMPC	3.0 ¹	0.65
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		4.5	6.9	<1.5 ^D	<0.56	<0.24	<0.33	<0.33	<0.16	<0.14
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		140	340	250 ^D	16	3.9	11	8.1	41	16
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		9.7	21	14 ^{J, D}	0.78 EMPC	<0.60	<0.87	<0.51	1.4	<0.27
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		240	540	400 ^D	26	4.1 ^{I, J,} EMPC	12	13	55	20
Total TCDF		ng/kg				81	110	74 ^D	6.2	0.48	2.6	1.8	13	1.6
Total PeCDF		ng/kg				440	610	280 ^D	17	2.9	9.7	25	31	12
Total HxCDF		ng/kg				440	830	550 ^D	25	5.7	15	24	40	17
Total HpCDF				380	840	620 ^D	35	7.8	20	18	83	31		
Individual Exceedances (DC)		2	4	3	0	0	0	0	0	0				
Cumulative Hazard Index (DC)		0.4623	0.8467	0.5517	0.0489	0.0042	0.0233	0.0364	0.061	0.0234				
Cumulative Cancer Risk (DC)		5.8E <mark>-06</mark>	1.1E-05	7.5E-06	6.1E-07	5.3E-08	2.9E-07	4.3E-07	8.5E-07	3.2E-07				
Total 2.3.7.8-TCDD Equivalence ¹		ng/kg	4.82	21.8		28	54	37	2.7	0.26	1.4	2.1	4.1	1.6

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet This site is assessed as Non-Industrial RCL = Residual Contaminant Level DC = Direct Contact ng/kg = Parts Per Trillion (ppt)

< = Concentration Below Laboratory Detection Limit</p>

- = Not Sampled/Collected

- - = No Standard/Not Applicable

TEQ = Toxicity Eqivalent Calculations

 1 = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

Exceeds NR720 Groundwater Pathway Protection
 Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL
 Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran Laboratory Qualifiers and Notes:

^J = Estimated Value

EMPC = Estimated Maximum Possible Concentration

^P = PCDE Interference

¹ = Interference Present

^V = Results verified by confimation analysis

^C = Results obtained from confirmation analysis

^D = Results obtained from analysis of diluted sample

^E = Exceeds calibration Range

4/23/2020	4/23/2020
P5	P5
2-3	11-13
19.9	16.8
0	0
<0.76	<0.91
0.74 ^{I, J,} EMPC	<0.79
1.8 ^J	<0.39
4.4 ^J	0.64
2.6 ^{I, J,} EMPC	<0.64
110	17
840	130
2.3	1.1
6.6	<0.79
43	5.9
200	31
<0.96	<0.66
<1.1	<1.1
1.8 ^{I, J,} EMPC	0.55 ^{I, J,} EMPC
2.4 ^{I, J,} EMPC	<0.41
1.7	<0.45
2.7 」	<0.45
<0.40	<0.43
54 P, EMPC	9.5 P, EMPC
<0.72	<0.98
59	12
8.9	<0.66
26	3.6
45	3.0 ¹
46	8.3
0	0
0.0709	0.0074
9.5E-07	1.1E-07
4.7	0.54

Table 1f Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

				(Collected By>					REI Engine	eering, Inc.				
					Date>	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020	<u>9/14/2020</u>	9/14/2020	9/14/2020	9/14/2020
					Sample>	P6*	P6	P7*	P7	P8*	P8*	P9*	P9	P10*	P10*
				Sample Dep	oth(Inches)>	2-3	10-12	2-3	10-12	2-3	10-12	2-3	10-12	2-3	10-12
			Sat	Percent I	Vioisture (%)>	17.2	6.4	15.9	9.5	11.9	17.3	17.4	9.7	15.9	14.1
			541		saturateu (U)>	0	U	U	U	U	U	U	U	0	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL										
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	0.32 I, J, EMPC	<0.27	0.97 」	<0.27	0.69	0.61	<0.26	0.27	0.41	<0.38
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		3.2	0.33 」	3.8	0.62	6.4	6.6	3.3	0.68	5.9	2.7 」
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		7.9	<0.96	9.4	1.5	17	16	6.7	2.1	12	5.1 ¹
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		24	2.0 '	35	5.7	69	51	28	6.5	48	15
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		13	1.4 [」]	19	3.2	29	25	12	3.8 ¹	22	8.5
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		530	36	1,200	190	1,200	1,000	550	150	900	290
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		4,600	290	11,000 ^E	1,700	10,000 ^E	8,100	4,400	1,100	7,600	2,300
Total TCDD		ng/kg				8.1	0.61	20	5.2	18	9.5	16	3.5	10	3.6
Total PeCDD		ng/kg				24	0.33	45	8.9	49	50	44	6.6	44	22
Total HxCDD		ng/kg				180	1.6	330	52	480	390	250	5.7	350	130
Total HpCDD		ng/kg				1,000	66	2,400	360	2,300	1,900	1,100	280	1,800	560
Furan Congeners															
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		1.9 v	<0.44	3.7 ^c	0.86 ^{I, J,} EMPC	4.1 ^c	5.7 ^c	3.3 ^v	0.76 [」]	4.3 ^C	2.1 ^c
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		0.32 ^{I, J,} EMPC	<0.72	3.3	<1.1	4.7 ^J	5.9	3.4	0.88	4.5 ^J	2.7
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		17	1.9	8.9	2.0	32	66	8.5	2.3 ^{I, J,} EMPC	53	54
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		11	<0.86	11	2.3 ^{I, J,} EMPC	20	17	13	3.5	15	12
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		13	1.6 P, J, EMPC	8.7	2.5 ^{I, J,} EMPC	24	36	12	4.0 ^{P, J,} EMPC	24	37
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		10	<1.4	9.0	3.1	20	23	9.5	3.5	31	31
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		4.6	<0 <mark>.69</mark>	3.7 」	0.67 ^J	8.3 ^{I,} _{EMPC}	10	4.0 ^J	0.67 ^{I, J,} EMPC	8.4	6.8
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		180	16	230	42	310	330	230	59	300	140
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		12	<1.1	12	2.8	20	20	12	2.4	17	8.3
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		400	26	640	100	550	530	390	95	460	170
Total TCDF		ng/kg				56	4.5	77	16	82	150	86	18	140	110
Total PeCDF		ng/kg				250	32	150	30	500	990	150	47	810	930
Total HxCDF		ng/kg				450	36	300	52	830	1,300	350	78	1,000	950
Total HpCDF		ng/kg				560	40	570	96	790	840	480	120	730	360
Individual Exceedances (DC)			1	1		2	0	1	0	4	4	1	0	3	1
Cumulative Hazard Index (DC)			1.0	1.0		0.4105	0.0329	0.4747	0.0847	0.8475	1.0253	0.3827	0.1023	0.882	0.6476
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		5.3E-06	4.1 <mark>E-07</mark>	7.2E-06	1.2E-06	1.1E-05	1.3E-05	5.0E-06	1.4E-06	1.1E-05	7.3E-06
Total 2,3,7,8-TCDD Equivalence ¹		ng/kg	4.82	21.8		26	2.0	<u>35</u>	6.1	54	<u>62</u>	24	6.6	<u>53</u>	36

Notes: NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet

This site is assessed as Non-Industrial

RCL = Residual Contaminant Level

DC = Direct Contact

ng/kg = Parts Per Trillion (ppt)

< = Concentration Below Laboratory Detection Limit

- = Not Sampled/Collected

- - = No Standard/Not Applicable

TEQ = Toxicity Eqivalent Calculations

 1 = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

Italic	ſ
Bold	ľ
Underlined	ľ

 Exceeds NR720 Groundwater Pathway Protection
 Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL = Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value

^{EMPC} = Estimated Maximum Possible Concentration

P = PCDE Interference

¹ = Interference Present

^V = Results verified by confimation analysis

^C = Results obtained from confirmation analysis

^D = Results obtained from analysis of diluted sample

^E = Exceeds calibration Range

Table 1g Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

					Collected By>						RE	I Engineering,	Inc.					
				Date>	9/14/2020	9/14/2020	5/12/2021	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/1 <mark>4/2</mark> 020	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020	
					Sample>	P11*	P11*	P11*	P12	P12	P13*	P13	P14	P14	P15	P15	P16	P16
				Sample De	oth(Inches)>	2-3	10-12	22-24	2-3	10-12	2-3	10-12	2-3	10-12	2-3	10-12	2-3	10-12
			Sat	Percent I	VIOISTURE (%)>	18.7	17.7	9.3	20.5	14.3	20.7	13.8	16.8	3.7	12.1	6.9	15.3	6.6
			581			0	0	0	0	0	0	0	U	0	0	0	0	0
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL													
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	1.5	0.79 ^{I, J,} EMPC	<0.17	<0.51	< 0.39	<0.56	<0.44	<0.70	<0.27	<0.39	<0.36	<0.77	<0.50
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		11	7.1	1.3	1.9 ^J	1.1 ^J	1.5 ^J	0.97	1.5 ⁷	<0.30	1.7 [」]	2.5 」	2.7 」	<0.93
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		24	15	1.5 ^J	3.5 ^J	1.9 I, J, EMPC	3.3 ^{I, J,} EMPC	2.1 ^{I, J,} EMPC	2.9 ^J	0.75 ^J	5.7	4.0 ^{I, J,} EMPC	5.0 ^J	<1.7
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		100	52	8.7	13	7.4	22	13	13	3.7 」	16	18	16	<2.0
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		45	25	3.8 ¹	6.7	4.8 ^J	10	6.9	5.9	1.6 ^J	9.7	9.4	10	<1.6
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		1,900	880	150	220	120	830	370	220	72	350	370	300	40
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		18,000 ^E	7,500	1,100	1,700	920	3,900	2,100	1,800	530	2,500	3,100	2,400	310
Total TCDD		ng/kg				21	19	0.57	8.0	4.2	5.3	4.5	6.9	1.7	1.4	4.8	4.4	<0.50
Total PeCDD		ng/kg				86	60	7.6	29	170	12	12	19	4.9	14	14	15	<0.93
Total HxCDD		ng/kg				700	380	52	120	64	220	120	100	30	140	140	130	8.1
Total HpCDD		ng/kg				3,700	1,700	270	410	240	1,400	660	420	130	690	760	570	74
Furan Congeners																		
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		9.1 ^c	8.7 ^C	0.83	2.2 ^c	1.2 ^c	0.91 I, J, EMPC	1.3 ^v	1.7 ^c	<0.30	2.2 ^C	1.9 ^v	1.1 ^{I, J,} EMPC	<0.69
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		11	7.4	0.88	2.0 ^{I, J,} EMPC	<1.8	<1.6	<1.4	<1.3	<1.3	2.1	1.9 ^{I, J,} EMPC	<0.74	<1.1
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		<u>110</u>	<u>130</u>	15	14	10	10	8.1	4.1 ^J	1.7 」	5.4	6.0	2.5 ^{I, J,} EMPC	1.0 ^J
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		22	17	3.1	6.6	2.6 LU	4.9 ^J	3.7 」	4.9 ^J	2.1	9.0	9.2	8.3	1.2 ^{I, J,} EMPC
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		46	32	5.3	20 P, EMPC	13 ^{P, EMPC}	5.7 ^J	5.8	7.7 ^{P, EMPC}	2.3	9.3	6.9 ^{I, EMPC}	7.9	<1.2
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		56	58	16	7.6	4.1 ^J	7.7	5.9	6.7	0.96 ^{I, J,} EMPC	5.5	7.3	5.3	1.8 [」]
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		18	16	2.0 」	2.5 ^J	<1.2	<1.5	0.97 ^{I, J,} EMPC	<1.4	<0.36	2.2	2.4	2.3 ^{I, J,} EMPC	<1.3
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		540	340	47	95	50	110	89	100	30	120	140	110	15
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		38	22	3.3 ^J	5.5 ^J	2.2 ^{I, J,} EMPC	5.5 ^{I, J,} EMPC	5.5 '	5.5 '	0.79 ^{I, J,} EMPC	6.5	8.4	5.7	<2.8
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		840	530	65	130	65	210	140	170	49	230	210	170	23
Total TCDF		ng/kg				280	290	33	72	39	34	38	32	7.7	26	27	25	1.9
Total PeCDF		ng/kg				1,400	1,500	220	230	160	150	150	87	28	100	92	74	5.0 '
Total HxCDF		ng/kg				2,100	2,000	130	260	170	230	200	130	42	220	210	180	22
Total HpCDF		ng/kg				1,300	890	130	200	100	280	210	220	66	300	310	230	31
Individual Exceedances (DC)			1	1		7	5	0	0	0	1	0	0	0	0	0	0	0
Cumulative Hazard Index (DC)			1.0	1.0		1.7746	1.4 <mark>579</mark>	0.2136	0.2754	0.1665	0.253	0.181	0.196	0.0428	0.2285	0.2552	0.2148	0.0172
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		2.2E-05	1.7E-05	2.5E-06	3.3E-06	2.0E-06	4.2E-06	2.6E-06	2.5E-06	5.8E-07	3.1E-06	3.4E-06	2.3E-06	2.6E-07
Total 2,3,7,8-TCDD Equivalence ¹		ng/kg	4.82	21.8		108	<u>84</u>	12	16	9.6	21	13	11	2.9	15	16	14	1.2

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet This site is assessed as Non-Industrial RCL = Residual Contaminant Level DC = Direct Contact

ng/kg = Parts Per Trillion (ppt)

< = Concentration Below Laboratory Detection Limit

- = Not Sampled/Collected

- - = No Standard/Not Applicable

TEQ = Toxicity Eqivalent Calculations

 1 = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

Italic	=
Bold	= [
<u>Underlined</u>	=

Exceeds NR720 Groundwater Pathway Protection Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value

EMPC = Estimated Maximum Possible Concentration

^P = PCDE Interference

^I = Interference Present

^V = Results verified by confimation analysis

^C = Results obtained from confirmation analysis

^D = Results obtained from analysis of diluted sample

^E = Exceeds calibration Range

Table 1h Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

				(Collected By>				REI Engine	ering, Inc.			
					Date>	5/12/2021	5/12/2021	5/12/2021	5/12/2021	5/12/2021	5/12/2021	5/12/2021	5/11/2021
					Sample>	P17*	P17*	P18*	P18	P19	P19	P20	P20
				Sample Dep	oth(Inches)>	2-3	10-12	2-3	14-16	2-3	14-16	2-3	12-14
				Percent I	Moisture (%)>	26.4	16.2	18.6	4.2	25.1	15.9	14.3	3.9
		1	Sati	urated (S) vs Uns	saturated (U)>	U	U	U	U	U	U	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL								
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	0.59 ^{J, I,} EMPC	1.2	<2.7 ^D	<0.37	<0.79	< 0.32	<3.1	<0.32
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		4.7 ^J	7.6	<1.4 ^D	<0.21	1.1 [」]	0.63	2.5 ^{J, D}	<0.20
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		12	18	5.1 ^{J, D}	< <mark>0.46</mark>	2.4	0.87 ^J	3.3 ^{J, D}	<0.37
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		46	86	20 ^{J, D}	< 0.44	9.4	3.4	11 ^{J, D}	1.0 ^{J, I,} EMPC
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		22	38	9.6 ^{J, D}	<0.41	3.9 ^{J, I,} EMPC	1.8 ^{J, I,} EMPC	5.1 ^{J, D}	0.4 ^{J, I,} EMPC
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		900	1,400	360 ^D	3.9 [」]	180	72	240 ^D	17
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		7,000 ^E	11,000 ^E	2,700	29	1,400	540	1,900 ^D	140
Total TCDD		ng/kg				7.9	8.7	<2.7 ^D	< 0.37	5.6	4.0	<3.1 D	<0.32
Total PeCDD		ng/kg				40	51	2.4 ^{J, D}	<0.21	11	6.8	7.7 ^{J, D}	<0.20
Total HxCDD		ng/kg				300	480	150 ^D	1.4 ^J	72	28	84 ^D	6.2
Total HpCDD		ng/kg				1,700	2,700	710 ^D	3.9	330	130	450 ^D	33
Furan Congeners													
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		2.1 ^v	4.2 ^C	<2.5 ^D	<0.69	1.6 ^v	<0.56	<4.0 ^D	<0.50
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		3.3	5.2	<2.5 ^D	<0.35	1.2	0.91	<2.9 ^D	<0.21
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		13	30	17 ^{J, D}	<0.38	3.4 」	1.9 [」]	6.7 ^{J, D}	0.43 」
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		12	22	8.8 ^{J, D}	<0.42	4.2 ^J	2.1	6.8 ^{J, D}	0.6
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		13	24	11 ^{J, D}	<0.35	3.9 」	1.9 [」]	6.9 ^{J, D}	0.38 ^{J, I,} EMPC
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		21	44	19 ^{J, D}	<0.41	3.2 [」]	1.6 [」]	6.7 ^{J, D}	0.53 ^{J, I,} EMPC
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		4.9	8.1	<4.6 D	<0.33	1.8 ^{J, I,} EMPC	0.89 ^{J, I,} EMPC	<1.9 D	<0.39
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		210	340	130 ^D	1.5 ^J	62	30	100 ^D	6.5
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		13	21	8.7 ^{J, D}	<0.57	3.3 ^{J, I,} EMPC	1.4 ^J	5.9 ^{J, I, D,} EMPC	<0.51
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		380	590	170 ^D	2.1	120	58	170 ^D	11
Total TCDF		ng/kg				59	100	43 ^D	<0.69	20	11	<4.0 D	0.59 ^{J, B}
Total PeCDF		ng/kg				200	360	250 ^D	4.6 ^J	54	23	84 ^D	5.4
Total HxCDF		ng/kg				270	660	210 ^D	2.0 」	100	28	160 ^D	10
Total HpCDF		ng/kg				540	880	290 ^D	3.3	150	130	240 ^D	15
Individual Exceedances (DC)			1	1		1	4	1	0	0	0	0	0
Cumulative Hazard Index (DC)			1.0	1.0		0.5416	0.9879	0.2926	0.0015	0.1259	0.0537	0.2024	0.0106
Cumulative Cancer Risk (DC)		1.0E-05	1.0E-05		7.4E-06	1.3E-05	3.7E-06	2.3E-08	1.7E-06	7.0E-07	2.6E-06	1.4E-07	
Total 2,3,7,8-TCDD Equivalence ¹		ng/kg	4.82	21.8		36	<u>63</u>	18	0.063	8.1	3.7	13	0.70

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet

This site is assessed as Non-Industrial

RCL = Residual Contaminant Level

DC = Direct Contact

- ng/kg = Parts Per Trillion (ppt)
- < = Concentration Below Laboratory Detection Limit

- = Not Sampled/Collected

- - = No Standard/Not Applicable

TEQ = Toxicity Eqivalent Calculations

 1 = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

Italic
Bold
Underlined

= Exceeds NR720 Groundwater Pathway Protection
 = Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL
 = Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value

- EMPC = Estimated Maximum Possible Concentration
- ^P = PCDE Interference
- ^I = Interference Present
- ^V = Results verified by confimation analysis

^C = Results obtained from confirmation analysis

^D = Results obtained from analysis of diluted sample

^E = Exceeds calibration Range

Results reported on a dry weight basis and are valid to no more than 2 significant figures

Responsive. Efficient. Innovative.

Table 1i Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

					Collected By>						REI Engin	eering, Inc.					
					Date>	9/13/2022	9/13/2022	9/13/2022	9/13/2022	9/13/2022	9/13/2022	9/13/2022	9/13/2022	9/13/2022	9/13/2022	9/13/2022	9/13/2022
					Sample>	S1	S2	S3	<i>S4</i>	S5	S6*	S7	<i>S8</i>	<i>S9</i>	S10	S11	S12
				Sample De	oth(Inches)>	2-3	2-3	2-3	2-3	2-3	2-3	2-3	2-3	2-3	2-3	2-3	2-3
				Percent	Moisture (%)>	29.3	12.2	15.0	29.6	19.4	24.3	19.5	20.6	21.3	21.3	22.7	6.8
	1		Sat	urated (S) vs Un	saturated (U)>	U	U	U	U	U	U	U	U	U	U	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL												
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	0.42	0.55	0.83 1, 1	<0.39	<0.28	<0.29	<0.17	<0.21	<0.23	<0.12	0.29 ^{J, I,} EMPC	0.27
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		1.9 [」]	2.6	1.5	1.2	1.2	2.3	0.35 LMPC	1.0 ¹	1.1	0.45 ^{J, I,} EMPC	2.0	2.0
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		1.7	4.3 ^J	2.6	2.4	1.7	4.8 ^J	1.00 ^J	2.3	2.0	0.97	3.6	4.4 ^J
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		2.3	13.0	8.2	9.9	6.3	20	2.3	7.6	7.3	2.5	13	13
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		1.8 [」]	8.8	4.4 ^J	4.7 [」]	3.5	9.3	1.5 ^J	4.5 [」]	3.9 ¹	1.7	6.7	7.3
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		28	310	180	220	120	530	46	160	150	57	280	320
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		180	2,700	1,500	1,700	840	3,300	370	1,300	1,200	450	2,200	2,700
Total TCDD		ng/kg				14	12	20	5.8	5.0	5.8	1.2 ^J	25	2.3	<0.12	8.4	11
Total PeCDD		ng/kg				15	20	9.9	12	8.7	15	1.1	72	7.6	4.4 ^J	21	23
Total HxCDD		ng/kg				29	120	70	79	52	160	24.0	63	52	23	110	110
Total HpCDD		ng/kg				53	620	360	440	240	980	100	320	290	120	550	610
Furan Congeners																	
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		7.2 ^v	1.3 ^c	1.1	1.4 ^v	1.1	2.7 ^c	< 0.35	1.1	0.66 ^{J, I,} EMPC	0.59	2.3 ^c	2.1 ^c
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		6.3	1.8	0.98	1.2	1.1	2.2	< <u>0.12</u>	1.0	0.70	0.37	1.9	1.9
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		11	9.2	6.3	3.8	6.8	27	1.4 ^J	4.4	5.8	1.5 ^{J, I,} EMPC	14	7.0
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		6.9	6.6	3.7	4.4 ^J	3.4	7.7	1.1	3.3	3.4	1.5	6.2	6.6
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		6.9	7.2	4.0 ^J	4.9 ^J	4.1 ^J	14	1.2 ^{J, I,} EMPC	3.5	3.4 ^{J, I,} EMPC	1.4 ^{J, I,} EMPC	10	8.0
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		8.1	7.2	3.8	4.2 ^{J, P,} EMPC	3.3	11	1.9 [」]	6.5	7.3	2.7 ¹	10 ^{P,} EMPC	7.9 ^{P,} EMPC
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		1.8 ^{J,I,} EMPC	2.0 ^{J,I,} EMPC	1.4 ^{J,I,} EMPC	1.2 ^{J,I,} EMPC	1.3 ^{J, I,} EMPC	3.2	0.46	0.98 ^{J, I,} EMPC	1.3	0.59	2.5	2.2
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		23	110	62	93	50	140	16	51	44	21	130	130
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		1.6 ^J	5.4	2.8	4.2	2.6	6.9	0.84	2.8	2.5	0.98 ^{J, I,} EMPC	5.6 ^{J, I,} EMPC	6.7
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		14	<mark>15</mark> 0	9.3	150	72	180	21	71	61	29	190	240
Total TCDF		ng/kg				130	43	37	30	49	76	3.6	25	21	9.3	59	52
Total PeCDF		ng/kg				120	100	84	61	75	300	22	72	97	23	210	110
Total HxCDF		ng/kg				71	240	140	99	120	330	22	73	77	30	230	160
Total HpCDF		ng/kg				27	230	130	190	100	150	17	54	47	21	130	140
Individual Exceedances (DC)			1	1		0	0	0	0	0	2	0	0	0	0	0	0
Cumulative Hazard Index (DC)			1.0	1.0		0.192	0.2591	0.1644	0.1442	0.1298	0.4039	0.0398	0.1251	0.1319	0.0491	0.279	0.2359
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		2.1E-06	3.3E-06	2.1E-06	1.9E-06	1.6E-06	5.2E-06	5.0E-07	1.6E-06	1.7E-06	6.2E-07	3.4E-06	3.1E-06
Total 2.3.7.8-TCDD Equivalence ¹		na/ka	4.82	21.8		10	16	10	9.4	7.7	26	2.5	7.9	8.1	3.0	17	17

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet This site is assessed as Non-Industrial RCL = Residual Contaminant Level DC = Direct Contact ng/kg = Parts Per Trillion (ppt) < = Concentration Below Laboratory Detection Limit - = Not Sampled/Collected - - = No Standard/Not Applicable TEQ = Toxicity Eqivalent Calculations

¹ = TEQ values calculated using the U.S. EPA 2007 values.
 * = Area of sample removed during July 2023 remedial excavation.

Exceeds NR720 Groundwater Pathway Protection Italic = Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL Bold Underlined = Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachloro<mark>dibenzo</mark>-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlor<mark>odibenz</mark>o-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value

EMPC = Estimated Maximum Possible Concentration

^P = PCDE Interference

^I = Interference Present

^V = Results verified by confimation analysis

^C = Results obtained from confirmation analysis

^D = Results obtained from analysis of diluted sample

^E = Exceeds calibration Range

Table 1j Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

					Collected By>						REI Engine	ering, Inc.					
					Date>	10/20/2022	11/28/2022	11/28/2022	11/28/2022	11/28/2022	11/28/2022	7/18/2023	7/18/2023	7/18/2023	7/18/2023	7/18/2023	7/18/2023
					Sample>	S13*	S14	S15	S16	S17	S18	S19	\$20	S21	S22	S23	S24
				Sample Dep	oth(Inches)>	2-3	2-3	2-3	2-3	10-12	10-12	12	12	<u>48</u>	12	48	12
				Percent I	Moisture (%)>	9.2	21.7	24.1	13.3	17.1	18.2	1.8	8.2	6.8	4.2	3.8	3.4
		T T	Sat	urated (S) VS Uns	saturated (U)>	U	U	U	U	U	U	U	U	U	U	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL												
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	0.54	0.30	3.7 ^{EMPC,}	0.16 ^{EMPC,}	0.27	0.17 EMPC,	<0.28	<0.37	<0.20	< 0.25	<0.22	<0.20
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		2.9	2.7	2.2	0.17	1.5 ^J	0.73	<0.16	0.15	<0.14	<0.11	<0.16	<0.15
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		5.3	3.1	4.2 ^J	0.36	2.0 EMPC,	1.4 ^J	< 0.15	0.43 ^{J, B}	0.23 EMPC,	0.24 ^{J, B}	0.35 ^{J, B}	0.38 ^{J, B}
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		16	11.0	12.0	0.60	7.9	5.3	< 0.12	0.82	0.26	0.39 ^{EMPC,}	0.59	0.77 ^{EMPC,}
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		8.9	6.3	7.1	0.33 EMPC,	3.9	2.8	<0.18	0.42 ^{EMPC,}	0.14 ^{EMPC,}	0.20	0.39	0.61
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		350	230	260	9.1	150	100	0.51 ^{EMPC,}	15	4.6 ^J	7.1	9.5	18
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		2,800	1,900	2,000	74	1,300	860	5.1 ^{J, B}	120	39	52	79	150
Total TCDD		ng/kg				16	13	36	0.41	3.8	4.5	<0.28	0.42	<0.20	<0.25	<0.22	0.30
Total PeCDD		ng/kg				25	21	46	0.85 ^J	9.7	8.5	< 0.16	0.74 ^J	<0.14	<0.11	0.26	<0.15
Total HxCDD		ng/kg				140	95	130	4.7 ^J	57	41	<0.12	6.4	1.3 ^{J, B}	1.8 ^{J, B}	2.2 」	6.2
Total HpCDD		ng/kg				600	440	490	19	270	190	0.53	29	8.2	13	17	34
Furan Congeners																	
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		8.7 ^V	2.4 ^V	4.2 ^v	0.17 ^J	1.1 ^v	1.2 ^v	< 0.21	<0.67	<0.21	<0.22	<0.20	<0.57
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		2.7	0.99 ^{EMPC,}	2.3	<0.15	0.63	0.31	0.51 ^{EMPC,}	27 P EMPC,	6.6 P EMPC,	0.41 ^{EMPC,}	35 ^P	27 P ^{EMPC,}
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		27	7.8	5.3 ^{EMPC,}	0.45	4.3	5.1	<0.15	2.7	0.64 EMPC,	0.21	1.9	3.0
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		11	4.0 ^J	6.2	0.26 EMPC,	3.2 ^{EMPC,}	4.0	<0.17	1.1 ^{EMPC,}	<0.14	<0.082	0.76 ^{EMPC,}	1.1
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		12	8.5	6.5	0.30	5.3	4.4	<0.14	0.93	<0.14	0.20	0.63	0.85
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		14	8.7	5.6	0.35	6.3	5.7 ^{EMPC,}	<0.11	3.0 ¹	0.78 ^{EMPC,}	0.067	2.1	3.1
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		3.3	2.1	1.4	0.17 ^{B, J}	1.5 ^{EMPC,}	1.2	<0.19	1.5 ^{EMPC,}	<0.057	<0.081	0.80 ^{EMPC,} P, J	0.96
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		140	87	93	3.5	55	38	0.23 ^{EMPC,}	8.9	1.8	1.9	3.8	7.1
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		7.8	4.4 ^J	2.8 ^J	0.22 EMPC,	2.5	2.1	<0.22	<0.32	<0.13	0.23	<0.013	<0.19
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		210	<mark>13</mark> 0	140	6.0 ^J	85	62	<0.32	11 ^J	2.5	2.4	5.0 '	8.4
Total TCDF		ng/kg				120	83	80	1.0	85	43	<0.21	4.7	1.2	<0.22	2.3	4.1
Total PeCDF		ng/kg				300	210	70	4.5 ^J	160	130	0.25	21	4.7 ^J	1.4	17	23
Total HxCDF		ng/kg				300	270	140	5.6	130	140	0.31	37	9.3	1.6	29	41
Total HpCDF		ng/kg				330	200	190	7.7	130	96	<0.19	20	4.7 ^J	4.1 ^J	11	18
Individual Exceedances (DC)			1	1		1	0	0	0	0	0	0	0	0	0	0	0
Cumulative Hazard Index (DC)			1.0	1.0		0.4342	0.2284	0.2753	0.0154	0.1428	0.113	0.0004	0.0535	0.0111	0.0045	0.0441	0.0513
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		5.2E-06	2.8E-06	3.4E-06	1.8E-07	1.8E-06	1.4E-06	4.9E-09	5.8E-07	1.2E-07	6.0E-08	4.8E-07	5.7E-07
Total 2.3.7.8-TCDD Equivalence ¹		ng/kg	4.82	21.8		25	14	16.5	0.87	8.7	6.7	0.024	2.9	0.61	0.29	2.3	2.8

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet This site is assessed as Non-Industrial RCL = Residual Contaminant Level DC = Direct Contact ng/kg = Parts Per Trillion (ppt) < = Concentration Below Laboratory Detection Limit - = Not Sampled/Collected - - = No Standard/Not Applicable TEQ = Toxicity Eqivalent Calculations

 1 = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

Italic	= Exceeds NR720 Groundwater Pathway Protection
Bold	= Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL
Underlined	= Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlor<mark>odibenz</mark>o-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value ^{EMPC} = Estimated Maximum Possible Concentration

- ^B = Less than 10x higher than method blank level
- ^P = PCDE Interference
- ^I = Interference Present
- ^V = Results verified by confimation analysis
- ^c = Results obtained from confirmation analysis
- ^D = Results obtained from analysis of diluted sample
- E = Exceeds calibration Range

Table 1k Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

					Collected By>						REI Engine	ering, Inc.					
					Date>	7/18/2023	7/18/2023	7/18/2023	7/19/2023	7/19/2023	7/19/2023	7/19/2023	7/19/2023	7/19/2023	7/19/2023	7/19/2023	7/19/2023
					Sample>	S25	S26	S27	S28	S29	S30	S31	S32	\$33	S34	S35	S36
				Sample Dep	oth(Inches)>	12	12	48	48	2-3	2-3	12	48	2-3	2-3	12	2-3
				Percent I	Moisture (%)>	6.5	7.5	4.9	1.4	4.8	5.3	4.6	2.4	6.8	10.1	3.6	13.3
		r –	Sat	urated (S) VS Uns	saturated (U)>	U	U	U	U	U	U	U	U	U	U	U	U
Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL												
2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	<0.27	<0.41	0.38	<0.22	<0.29	<0.25	<0.061	<0.077	<0.21	<0.69	<0.54	0.75
1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		<0.12	<0.86	2.8	<0.14	1.4	1.4 ^J	0.42 EMPC,	0.092	0.67	2.1	<0.22	4.7 ^J
1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		0.51 ^{EMPC,}	3.5 ^{EMPC,}	5.7	0.41 ^{EMPC,}	2.5	2.9	1.1 ^{J, B}	0.31 ^{J, B}	1.9 ¹	3.6 ^{EMPC,}	0.31	7.3
1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		0.54	9.3	22	0.66 EMPC,	13	6.4	3.0	0.47	5.5	14	0.26 EMPC,	23
1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		0.38 ^{EMPC,}	3.8	10	0.48	6.6	4.3 [」]	1.6 ^J	0.24	3.4	5.2	<0.13	15
1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		10	200	400	14	220	150	52	9.3	100	290	3.8	450
OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		76	2,100	3,800	110	1,900	1,200	470	74	830	2,500	35	3,500
Total TCDD		ng/kg				<0.27	3.4	7.2	<0.22	6.0	8.7	1.3	0.15 ^J	3.4	3.3	<0.54	13
Total PeCDD		ng/kg				<0.12	5.9	25	<0.14	20	17	2.3	0.092	10	13	<0.22	35
Total HxCDD		ng/kg				3.2	52	140	3.5	88	64	19	3.2	44	95	1.6 [」]	200
Total HpCDD		ng/kg				19	390	740	25	410	290	92	16	190	600	6.9	850
Furan Congeners																	
2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		<0.50	<0.67	2.1 ^c	<0. <mark>26</mark>	1.8 ^v	1.4 ^v	0.50	<0.13	0.80	1.6 ^C	<0.70	3.1 ^v
1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		42 P EMPC,	69 P	1.9 [」]	33 P	300 EMPC	98 P	< <mark>0.2</mark> 0	<0.15	170 ^{EMPC,}	3.9 ^{EMPC,}	14 P	280 P
2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		1.9	11	55	3.1	72	11	7.7	0.90	12	14	1.0	44
1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		1.0 ^{EMPC,}	4.7 ^J	13	0.73 ^{EMPC,}	11 ^{EMPC,}	6.4 ^{EMPC,}	8.2	0.75	5.9 P	25.0 ^{EMPC,}	<0.16	21 P EMPC,
1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		0.76	4.2 ^J	20 P EMPC,	0.80	15	4.9	5.8 P	0.57	4.2 ^J	15	<0.16	16
2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		2.4 ^{EMPC,}	8.6	43	2.7	54	12	8.7	0.71 ^{EMPC,}	12	20	0.78 EMPC,	46
1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		1.4 ^{EMPC,}	4 .2 ¹	5.3	1.2	14 PEMPC,	6.3 ^{EMPC,}	1.1	0.25	7.6 P	3.3	<0.11	17 P EMPC,
1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		4.3 ¹	90	180	6.6	110	73	21	2.6	47	100	2.3	200
1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		<0.13	<0.65	10	<0.30	6.6	4.1 ^J	1.4 ^J	<0.15	2.8	7.6	< 0.33	12
OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		5.3	100	320	8.6 ^J	110	85	40	8.5 ^J	50	150	2.7 」	220
Total TCDF		ng/kg				0.65	<0.67	140	1.9	160	46	16	0.64	32	49	<0.70	120
Total PeCDF		ng/kg				15	74	670	25	620	89	95	7.6	97	320	7.7	270
Total HxCDF		ng/kg				29	130	450	38	750	180	78	7.7	170	410	11	610
Total HpCDF		ng/kg				11	210	190	16	280	170	22	2.6	110	250	6.0	440
Individual Exceedances (DC)			1	1		0	0	1	0	3	0	0	0	1	0	0	2
Cumulative Hazard Index (DC)			1.0	1.0		0.0510	0.2135	0.6908	0.0535	0.8958	0.2617	0.1203	0.0147	0.208	0.338	0.0175	0.8902
Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		5.5E-07	2.6E-06	7.9E-06	5.8E-07	9.7E-06	3.0E-06	1.4E-06	1.7E-07	3.1E-06	4.1E-06	1.9E-07	1.0E-05
Total 2.3.7.8-TCDD Equivalence ¹		ng/kg	4.82	21.8		2.7	13	<u>39</u>	2.9	48	15	6.6	0.84	15	20	0.93	50

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet This site is assessed as Non-Industrial RCL = Residual Contaminant Level DC = Direct Contact ng/kg = Parts Per Trillion (ppt) < = Concentration Below Laboratory Detection Limit - = Not Sampled/Collected - - = No Standard/Not Applicable TEQ = Toxicity Eqivalent Calculations

 1 = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

Italic	= Exceeds NR720 Groundwater Pathway Protection
Bold	= Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL
Underlined	= Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlor<mark>odibenz</mark>o-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

^J = Estimated Value ^{EMPC} = Estimated Maximum Possible Concentration

- ^B = Less than 10x higher than method blank level
- ^P = PCDE Interference
- ^I = Interference Present
- ^V = Results verified by confimation analysis
- ^c = Results obtained from confirmation analysis
- ^D = Results obtained from analysis of diluted sample
- E = Exceeds calibration Range

Table 11 Soil Analytical Results - NR720 Soil Standards City of Wausau - Riverside Park 132 River Street Wausau, WI 54401 BRRTS# 02-37-584785

Disk Disk <thdisk< th=""> Disk Disk <th< th=""><th></th><th></th><th></th><th></th><th>(</th><th>Collected By></th><th colspan="8">REI Engineering, Inc.</th></th<></thdisk<>					(Collected By>	REI Engineering, Inc.							
Start Star Start Start <th< td=""><td></td><td></td><td></td><td></td><td></td><td>Date></td><td>7/19/2023</td><td>7/19/2023</td><td>7/19/2023</td><td>7/19/2023</td><td>7/20/2023</td><td>7/20/2023</td><td>7/21/2023</td></th<>						Date>	7/19/2023	7/19/2023	7/19/2023	7/19/2023	7/20/2023	7/20/2023	7/21/2023	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample>						<i>\$37</i>	S38	S39	S40	S41	S42	S43	
Disk Disk <th< td=""><td colspan="5">Sample Depth(Inches)></td><td>2-3</td><td>2-3</td><td>2-3</td><td>12</td><td>12</td><td>12</td><td>12</td></th<>	Sample Depth(Inches)>					2-3	2-3	2-3	12	12	12	12		
Diaxin Congeners CAS Number Non-Industrial (Non-Industrial Non-Industrial DC RCL Col Pot Printway RCL Col Pot Non-Industrial (Non-Industrial Printway RCL Col Pot Non-Industrial Non-I				Sati	Percent N	Noisture (%)>	9.4	7.8	6.9	5.7	1.7	6.9	5.3	
23.73 PCDO 1746-014 mg/kg 4.82 7.18 30.0 0.41' 0.36' <0.08' <0.08' <0.02'' 0.03'' 12.3.7.8*PCDD 3927-84 mg/kg 4.43 2.23 6.3 1.8<''	Dioxin Congeners	CAS Number	Units	Non-Industrial Not-to-Exceed DC RCL	Industrial Not-to-Exceed DC RCL	Groundwater Pathway Protection RCL		0	0			0	U	
1.2.3.7.8+CCD 4021-44 6/kg 4.93 2.2.3 1 1.6.* 1.1.** 0.1.4** 0.2.0*** 0.2.0*** 0.2.2* 1.2.3.4.7.8+LCDD 3922-28.4 ng/kg 49.3 223 6.3 4.8.* 4.8.* 0.4.5** 0.0.6** 0.2.0*** 0.3.6*** 0.3.6*** 0.3.6*** 0.3.6**** 0.3.6**** 0.3.6***** 0.3.6***********************************	2,3,7,8-TCDD	1746-01-6	ng/kg	4.82	21.8	30.0	0.41	0.36	< 0.95	<0.082	<0.17	<0.22	< 0.34	
12.3.4.7.8-HxCDD 39227.84- ng/kg 49.3 223 6.3 4.8' 4.8' 0.45' 0.36 Max 1.0.1Max 0.36 Max 12.3.5.7.8-HxCDD 5763.85.7 ng/kg 49.3 223 11 7.7 8.0 0.45' 0.39' 1.4 0.37'' 12.3.5.7.8-HxCDD 3582.46.9 ng/kg 48.4 2.19E-03 11 7.7 8.0 0.45'' 0.39'' 1.4 0.37'' 12.3.5.7.8-HxCDD 3582.46.9 ng/kg 48.4 2.19E-03 370 240 280 13 0.88''' 6.4 6.4 0CDD 3268.87.9 ng/kg 24 11 6.7 0.91' <.01''	1,2,3,7,8-PeCDD	40321-76-4	ng/kg	4.93	22.3		1.8	1.6	1.1 ^{EMPC,}	0.14 EMPC,	0.20 EMPC,	0.38	< 0.22	
12.3.6.7.8 HxCDD 5765 88-7 ng/kg 49.3 223 16 10.0 13.0 0.68' <0.08 2.0 0.43 ¹ ¹ ¹ ¹ ¹ 1.2.3.7.8.9 HxCDD 19408-74.3 ng/kg 49.3 223 11 7.7 8.0 0.45' 0.39' 1.4 0.37' 1.2.3.4.7.8 HxCDD 35822-46- ng/kg 1.64E+04 7.4E+04 370 240 280 110 5.3' ¹⁸ 340 50 OCDD 3268-87-9 ng/kg 7 2.0 11 6.7 0.91' 3.0' 0.3'' 7.0'' 0.42' 3.6' 0.45' Total PCCDD ng/kg 1 1.64 1.0 0.03' 4.02'' 0.6'' 0.45' 0.45'' </td <td>1,2,3,4,7,8-HxCDD</td> <td>39227-28-6</td> <td>ng/kg</td> <td>49.3</td> <td>223</td> <td></td> <td>6.3</td> <td>4.8 ^J</td> <td>4.8 ^J</td> <td>0.45</td> <td>0.36 ^{EMPC,}</td> <td>1.0 ^{EMPC,}</td> <td>0.30 ^{EMPC,}</td>	1,2,3,4,7,8-HxCDD	39227-28-6	ng/kg	49.3	223		6.3	4.8 ^J	4.8 ^J	0.45	0.36 ^{EMPC,}	1.0 ^{EMPC,}	0.30 ^{EMPC,}	
12.3.7.8.9-HxCDD 1948-74-3 ng/kg 49.3 223 11 7.7 8.0 0.45 ¹ 0.33 ¹ 0.37 ¹ 1.2.3.4.6,7.8-HyCDD 35622.469 ng/kg 444 219F.403 3.100 1.800 2.200 110 5.3 ¹¹³ 4.65 6.4 OCDD 3268.879 ng/kg 1 1.800 2.200 110 5.3 ¹¹³ 3.40 50 Total FCDD ng/kg 2.4 1.1 6.7 0.91 ¹ <0.17	1,2,3,6,7,8-HxCDD	57653-85-7	ng/kg	49.3	223		16	10.0	13.0	0.58	<0.088	2.0	0.43 ^{EMPC,}	
12.3.4.6.7.8-HpCDD 35822-46-9 ng/kg 484 2.19E+03 370 240 280 13 0.88 ¹ MPC 45 6.4 OCDD 3268-87-9 ng/kg 1.44E+04 7.44E+04 3100 1.800 2.00 110 6.3 ¹³ 340 50 Total PCDD ng/kg 244 111 6.7 0.91 ¹ 0.03 ¹ 0.42 ¹ 0.05 ¹ 0.02 ¹ 0.02 ¹ 0.02 ¹ 0.02 ¹ 0.02 ¹ 0.02 ¹ 0.05 ¹ <	1,2,3,7,8,9-HxCDD	19408-74-3	ng/kg	49.3	223		11	7.7	8.0	0.45	0.39	1.4	0.37	
OCDD 3268-87-9 ng/kg 1.64E+04 7.44E+04 3.100 1.800 2.200 110 5.3 ^{1-b} 3.40 50 Total TCDD ng/kg 24 11 6.7 0.91' <0.17	1,2,3,4,6,7,8-HpCDD	35822-46-9	ng/kg	484	2.19E+03		370	240	280	13	0.88 ^{EMPC,}	45	6.4	
Total TCDD ng/kg 24 11 6.7 0.91 ⁷ <0.17 <0.22 0.37 ⁷ Total PCDD ng/kg 26 16 6.1 0.63 ⁷ 0.42 ⁷ 3.6 ⁷ 0.45 ⁷ Total HCDD ng/kg 140 100 100 4.9 ⁷ 0.76 ⁷ 15 0.85 ⁷ Total HCDD ng/kg 140 100 100 4.9 ⁷ 0.76 ⁷ 15 0.85 ⁷ Total HCDD ng/kg 1.660 460 530 2.4 <0.24	OCDD	3268-87-9	ng/kg	1.64E+04	7.44E+04		3,100	1,800	2,200	110	5.3 ^{J, B}	340	50	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total TCDD		ng/kg				24	11	6.7	0.91	<0.17	<0.22	0.37	
Total HxCDD ng/kg ng/kg <td>Total PeCDD</td> <td></td> <td>ng/kg</td> <td></td> <td></td> <td></td> <td>26</td> <td>16</td> <td>6.1</td> <td>0.63</td> <td>0.42</td> <td>3.6</td> <td>0.45</td>	Total PeCDD		ng/kg				26	16	6.1	0.63	0.42	3.6	0.45	
Total HpCDD ng/kg 660 460 530 24 <0.24 84 13 Furan Congeners M <th <="" td=""><td>Total HxCDD</td><td></td><td>ng/kg</td><td></td><td></td><td></td><td>140</td><td>100</td><td>100</td><td>4.9 ^J</td><td>0.76</td><td>15</td><td>0.85</td></th>	<td>Total HxCDD</td> <td></td> <td>ng/kg</td> <td></td> <td></td> <td></td> <td>140</td> <td>100</td> <td>100</td> <td>4.9 ^J</td> <td>0.76</td> <td>15</td> <td>0.85</td>	Total HxCDD		ng/kg				140	100	100	4.9 ^J	0.76	15	0.85
Furan Congeners Image: Marking	Total HpCDD		ng/kg				660	460	530	24	< 0.24	84	13	
2,3,7,8-TCDF 51207-31-9 ng/kg 48.2 219 1.8 c 1.5 0.96 time 0.14 d <0.22 <0.66 <0.44 1,2,3,7,8-PeCDF 57117-41-6 ng/kg 164 744 31 $\frac{\mu}{\mu}$ $27 \frac{\mu}{\mu}$ $51 \frac{\mu}{\mu}$ 0.13^{-1} $0.72 \frac{\mu}{\mu}$ $19 \frac{\mu}{\mu}$ $58 \frac{\mu}{\mu}$ 2,3,4,7.8-PeCDF 57117-31-4 ng/kg 48.5 220 17 8.5 12 0.75^{-1} 0.35^{-1} 1.1^{-1} 0.11^{-1} 1,2,3,4,7.8-PeCDF 57117-44-9 ng/kg 48.5 220 10 6.7 6.9 $0.32 \frac{\mu}{100}$ 0.35^{-1} $1.1 \frac{\mu}{100}$ 0.35^{-1} $1.1 \frac{\mu}{100}$ 0.31^{-1} $1.1 \frac{\mu}{100}$ 0.31^{-1} $1.1 \frac{\mu}{100}$ 0.31^{-1} $1.1 \frac{\mu}{100}$ 0.35^{-1} 0.11^{-1} 0.13^{-1} 0.11^{-1} 0.11^{-1} 0.11^{-1} 0.11^{-1} 0.11^{-1} 0.13^{-1} 0.35^{-1} 0.35^{-1} $1.1 \frac{\mu}{100}$ 0.35^{-1} 0.35^{-1} 0.35^{-1} 0.11^{-1} 0.13^{-1} 0.15^{-1} 0.13^{-1} 0.15^{-1	Furan Congeners													
1.2.3.7.8-PeCDF 57117-41-6 ng/kg 164 744 $31 \ {}^{\text{DMC}}$ $27 \ {}^{\text{DMC}}$ $51 \ {}^{\text{DMC}}$ $0.72 \ {}^{\text{DMC}}$ $19 \ {}^{\text{DMC}}$ $5.8 \ {}^{\text{DMC}}$ 2.3.4.7.8-PeCDF 57117-31-4 ng/kg 16.4 74.4 17 8.5 12 $0.75^{1/2}$ $0.36^{1/2}$ $3.1^{1/2}$ $1.4^{1/2}$ 1.2.3.6.7.8-HxCDF 70648-26-9 ng/kg 48.5 220 10 6.7 6.9 $0.32^{1/10}_{1.00}$ $0.13^{1/2}$ $1.1^{1/2}$ $0.13^{1/2}$ $1.1^{1/2}$ $0.13^{1/2}$ $1.1^{1/2}$ $0.13^{1/2}$ $0.35^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.35^{1/2}$ $0.11^{1/2}$ $0.35^{1/2}$ $0.11^{1/2}$ $0.35^{1/2}$ $0.11^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.35^{1/2}$ $0.11^{1/2}$ $0.13^{1/2}$ $0.35^{1/2}$ $0.11^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$ $0.13^{1/2}$	2,3,7,8-TCDF	51207-31-9	ng/kg	48.2	219		1.8 ^c	1.5	0.96 EMPC,	0.14	<0.22	<0.66	<0.44	
2,3,4,7,8-PeCDF 57117-31-4 ng/kg 1.6.4 74.4 17 8.5 12 0.75 ⁺ 0.36 ⁺ 3.1 ⁺ 1.4 ⁺ 1,2,3,4,7,8-HxCDF 70648-6-9 ng/kg 48.5 220 10 6.7 6.9 0.32 ^{LMC} 0.35 ⁺ 1.1.4 ⁺ <0.11	1,2,3,7,8-PeCDF	57117-41-6	ng/kg	164	744		31 PEMPC,	27 PEMPC,	51 ^{EMPC,}	0.13	0.72 ^{EMPC,}	19 P	5.8 ^{EMPC,}	
1.2.3.4,7.8-HxCDF 70648-26-9 ng/kg 48.5 220 10 6.7 6.9 0.32 LMPC LMPC 0.35 l 1.4 l <0.11 1.2.3.6,7.8-HxCDF 57117-44-9 ng/kg 48.5 220 9 5.0 l 4.8 LMPC 0.5 l 0.19 LMPC 0.11 LMPC <.0.13	2,3,4,7,8-PeCDF	57117-31-4	ng/kg	16.4	74.4		17	8.5	12	0.75	0.36	3.1	1.4 ^J	
1.2.3.6.7.8-HxCDF 57117-44-9 ng/kg 48.5 220 9 5.0 ¹ 4.8 t t t t t t t t t t t t t t t t t t t	1,2,3,4,7,8-HxCDF	70648-26-9	ng/kg	48.5	220		10	6.7	6.9	0.32 EMPC,	0.35	1.4 [」]	<0.11	
2,3,4,6,7,8-HxCDF 60851-34-5 ng/kg 49.3 223 19 10 8.6 0.84 ¹ 0.26 ^{LMPC} _L 3.1 ¹ 1.1 ¹ 1,2,3,7,8,9-HxCDF 72918-21-9 ng/kg 49.3 223 7.7 ^{PMC} _L 3.6 ^{PMC} _P 4.9 0.29 ¹ 0.41 ^{LMPC} _L 1.3 ¹ <0.16	1,2,3,6,7,8-HxCDF	57117-44-9	ng/kg	48.5	220		9	5.0 ^J	4.8 ^{EMPC,}	0.52	0.19 EMPC,	1.1 ^{EMPC,}	<0.13	
1,2,3,7,8,9+HxCDF 72918-21-9 ng/kg 49.3 223 7.7 pMC 3.6 pMC 4.9 0.29 1 0.41 pMC 1.3 1 <0.16 1,2,3,4,6,7,8+HpCDF 67562-39-4 ng/kg 490 2.22E+03 150 95 100 5.3 0.37 pMC 19 3.9 n 1,2,3,4,7,8,9+HpCDF 55673-89-7 ng/kg 490 2.22E+03 110 4.7 d 8.0 0.37 d 0.47 pMC 1.5 d <0.48	2,3,4,6,7,8-HxCDF	60851-34-5	ng/kg	49.3	223		19	10	8.6	0.84	0.26 ^{EMPC,}	3.1	1.1	
1,2,3,4,6,7,8-HpCDF 67562-39-4 ng/kg 490 2,22E+03 150 95 100 5.3 0.37 L_1C 190 3.9 d 1,2,3,4,7,8,9-HpCDF 55673-89-7 ng/kg 490 2,22E+03 11 4.7 d 8.0 0.37 d 0.47 L_1CC 1.5 d <0.48	1,2,3,7,8,9-HxCDF	72918-21-9	ng/kg	49.3	223		7.7 ^{EMPC,}	3.6 ^{EMPC,}	4.9	0.29	0.41 ^{EMPC,}	1.3	<0.16	
1,2,3,4,7,8,9-HpCDF 55673-89-7 ng/kg 490 2.22E+03 11 4.7 ⁻¹ 8.0 0.37 ⁻¹ 0.47 ^{-LMPC} 1.5 ⁻¹ <0.48 OCDF 39001-020 ng/kg 1.64E+04 7.44E+04 210 120 150 8.3 ⁻¹ 1.2 ⁻¹ 24 3.2 ⁻¹ Total TCDF ng/kg 600 29 17 4.2 <0.22	1,2,3,4,6,7,8-HpCDF	67562-39-4	ng/kg	490	2.22E+03		150	95	100	5.3	0.37 ^{EMPC,}	19	3.9	
OCDF 39001-02-0 ng/kg 1.64E+04 7.44E+04 210 120 150 8.3 ⁻¹ 1.2 ⁻¹ 24 3.2 ⁻¹ Total TCDF ng/kg <t< td=""><td>1,2,3,4,7,8,9-HpCDF</td><td>55673-89-7</td><td>ng/kg</td><td>490</td><td>2.22E+03</td><td></td><td>11</td><td>4.7 ^J</td><td>8.0</td><td>0.37</td><td>0.47 ^{EMPC,}</td><td>1.5</td><td><0.48</td></t<>	1,2,3,4,7,8,9-HpCDF	55673-89-7	ng/kg	490	2.22E+03		11	4.7 ^J	8.0	0.37	0.47 ^{EMPC,}	1.5	<0.48	
Total TCDF ng/kg ··· ··· 60 29 17 4.2 <0.22 6.4 <0.44 Total PeCDF ng/kg ··· ng/kg ··· 130 69 78 8.6 0.76 ³ 19 7.5 Total PeCDF ng/kg ··· ··· 320 160 170 8.1 0.69 ³ 39 11 Total HxCDF ng/kg ··· ··· ··· 410 210 240 5.7 <0.18	OCDF	39001-02-0	ng/kg	1.64E+04	7.44E+04		210	120	150	8.3	1.2	24	3.2	
Total PeCDF ng/kg 130 69 78 8.6 0.76 ^{-J} 19 7.5 Total HxCDF ng/kg 320 160 170 8.1 0.69 ^{-J} 39 11 Total HxCDF ng/kg 410 210 240 5.7 <0.18	Total TCDF		ng/kg				60	29	17	4.2	<0.22	6.4	<0.44	
Total HxCDF ng/kg 320 160 170 8.1 0.69 ⁻¹ 39 11 Total HpCDF ng/kg 410 210 240 5.7 <0.18	Total PeCDF		ng/kg				130	69	78	8.6	0.76	19	7.5	
Total HpCDF ng/kg 410 210 240 5.7 <0.18 43 7.0 Individual Exceedances (DC) 1 1 1 0	Total HxCDF		ng/kg				320	160	170	8.1	0.69	39	11	
Individual Exceedances (DC) 1 1 1 0 0 0 0 0 0 0 Cumulative Hazard Index (DC) 1.0 1.0 0.3765 0.2348 0.2626 0.0162 0.0105 0.0657 0.0171 Cumulative Cancer Risk (DC) 1.0E-05 1.0E-05 4.6E-06 2.9E-06 3.3E-06 1.9E-07 1.1E-07 7.7E-07 1.9E-07 Total 2,3,7,8-TCDD Equivalence ¹ mg/kg 4.82 21.8 23 14 16 1.0 0.54 3.8 0.93	Total HpCDF		ng/kg				410	210	240	5.7	<0.18	43	7.0	
Cumulative Hazard Index (DC) 1.0 1.0 0.3765 0.2348 0.2626 0.0162 0.0105 0.0657 0.0171 Cumulative Cancer Risk (DC) 1.0E-05 1.0E-05 1.0E-05 4.6E-06 2.9E-06 3.3E-06 1.9E-07 1.1E-07 7.7E-07 1.9E-07 Total 2,3,7,8-TCDD Equivalence ¹ ng/kg 4.82 21.8 23 14 16 1.0 0.54 3.8 0.93	Individual Exceedances (DC)		1	1		1	0	0	0	0	0	0		
Cumulative Cancer Risk (DC) 1.0E-05 1.0E-05 4.6E-06 2.9E-06 3.3E-06 1.9E-07 1.1E-07 7.7E-07 1.9E-07 Total 2,3,7,8-TCDD Equivalence ¹ ng/kg 4.82 21.8 23 14 16 1.0 0.54 3.8 0.93	Cumulative Hazard Index (DC)			1.0	1.0		0.3765	0.2348	0.2626	0.0162	0.0105	0.0657	0.0171	
Total 2,3,7,8-TCDD Equivalence ¹ ng/kg 4.82 21.8 23 14 16 1.0 0.54 3.8 0.93	Cumulative Cancer Risk (DC)			1.0E-05	1.0E-05		4.6E-06	2.9E-06	3.3E-06	1.9E-07	1.1E-07	7.7E-07	1.9E-07	
	Total 2,3,7,8-TCDD Equivalence ¹		ng/kg	4.82	21.8		23	14	16	1.0	0.54	3.8	0.93	

Notes:

NR 720 Standards Obtained From WDNR RR Program's Soil RCL Spreadsheet

This site is assessed as Non-Industrial

RCL = Residual Contaminant Level

DC = Direct Contact

ng/kg = Parts Per Trillion (ppt)

< = Concentration Below Laboratory Detection Limit

- = Not Sampled/Collected

- - = No Standard/Not Applicable

TEQ = Toxicity Eqivalent Calculations

 1 = TEQ values calculated using the U.S. EPA 2007 values.

* = Area of sample removed during July 2023 remedial excavation.

Italic	
Bold	
Underlined	

Exceeds NR720 Groundwater Pathway Protection
 Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL
 Exceeds NR720 Non-Industrial Not-To-Exceed DC RCL

TCDD: Tetrachlorodibenzo-p-dioxin PeCDD: Pentachlorodibenzo-p-dioxin HxCDD: Hexachlorodibenzo-p-dioxin HPCDD: Heptachlorodibenzo-p-dioxin OCDD: Octachlorodibenzo-p-dioxin TCDF: Tetrachlorodibenzofuran PeCDF: Pentachlorodibenzofuran HxCDF: Hexachlorodibenzofuran HPCDF: Heptachlorodibenzofuran OCDF: Octachlorodibenzofuran

Laboratory Qualifiers and Notes:

= Estimated Value

^{EMPC} = Estimated Maximum Possible Concentration

- ^B = Less than 10x higher than method blank level
- ^P = PCDE Interference
- ^I = Interference Present

^V = Results verified by confimation analysis

^C = Results obtained from confirmation analysis

^D = Results obtained from analysis of diluted sample

^E = Exceeds calibration Range

